Patents by Inventor Jaime Gomez Rivas

Jaime Gomez Rivas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9040922
    Abstract: A THz frequency range antenna is provided which comprises: a semiconductor film (3) having a surface adapted to exhibit surface plasmons in the THz frequency range. The surface of the semiconductor film (3) is structured with an antenna structure (4) arranged to support localized surface plasmon resonances in the THz frequency range.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: May 26, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jaime Gomez Rivas, Vincenzo Giannini, Audrey Anne-Marie Berrier, Stefan Alexander Maier, Marion Matters-Kammerer, Lorenzo Tripodi
  • Patent number: 8969804
    Abstract: A device for analyzing a sample using radiation in the terahertz frequency range is provided. The device comprises a transmitter (3) comprising a THz signal generator (5, 6, 7; 51) for generating an electromagnetic THz signal, the THz signal generator comprising a nonlinear transmission line (7; 52). The device further comprises a surface plasmon polariton generating unit (8) adapted to convert the THz signal into a surface plasmon polariton. The transmitter (3) and the surface plamon polariton generating unit (8) are either integrated on one common substrate or on two separate substrates.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: March 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Lorenzo Tripodi, Jaime Gomez Rivas, Ullrich Richard Rudolf Pfeiffer, Peter Gunther Haring Bolivar
  • Publication number: 20140311572
    Abstract: A luminescent solar concentrator, comprising: at least one luminescent device (12) for converting incident light (16) in at least one operating mode, wherein the luminescent device (12) has at least one nanostructured layer (34) and at least one luminescent member (14), and wherein the nanostructured layer (34) is in close proximity to the luminescent member (14); and at least one light guide (18) that is designed to guide light in a direction by total internal reflection.
    Type: Application
    Filed: December 10, 2012
    Publication date: October 23, 2014
    Inventors: Dirk Kornelis Gerhardus De Boer, Jaime Gomez Rivas, Said Rahimzadeh-Kalale Rodirguez, Silke Luzia Diedenhofen
  • Patent number: 8711356
    Abstract: The present disclosure relates to a gas sensor including a first layer and a second layer superimposed on each other along an interface between the two layers. The first layer includes an array of nanoparticles along the interface, the nanoparticles provided so as to allow, upon illumination with electromagnetic radiation, long range diffractive coupling of surface plasmon resonances resulting in a surface lattice resonance condition. The second layer includes a material that, when exposed to at least one predetermined gas, detectably affects the surface lattice resonance condition. The material of the second layer preferably has a porosity of at least 10%.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: April 29, 2014
    Assignee: Stichting IMEC Nederland
    Inventors: Peter Offermans, Sywert H. Brongersma, Mercedes Crego Calama, Gabriele Vecchi, Jaime Gomez Rivas
  • Patent number: 8629983
    Abstract: The invention relates to an assembly for detecting the presence of a target based on a detection of a resonance associated to surface polaritons, such as long-range surface exciton polaritons (LRSEP). The invention relates to an assembly to be used in connection with a bio-sensor. The assembly comprising a carrier substrate (1) and a sensor layer (2) positioned on the carrier substrate. The sensor layer is of a material having a complex permittivity with an imaginary part being greater than or similar to the real part.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: January 14, 2014
    Assignee: Stichting IMEC Nederland
    Inventors: Manuel Forcales, Jaime Gomez Rivas, Marcus Verschuuren, Vincenzo Giannini
  • Publication number: 20130286633
    Abstract: Proposed is an illumination device (100), comprising a light source (110) such as an LED or a laser diode, a wavelength conversion medium (120) such as a phosphor, and a periodic antenna array (300) made of a highly polarisable material such as a metal. The light source emits primary wavelength light that at least partially is converted in secondary wavelength light by the wavelength conversion medium. The periodic antenna array is positioned in close proximity to the wavelength conversion medium and functions to enhance the efficiency of the absorption and/or emission processes in the wavelength conversion medium through the coupling of the incident primary wavelength light or the emitted secondary light to surface lattice resonances that arise from the diffractive coupling of localized surface plasmon polaritons in the individual antennas of the array.
    Type: Application
    Filed: January 16, 2012
    Publication date: October 31, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Said Rahimzadeh Kalaleh Rodriguez, Jaime Gomez Rivas, Abraham Rudolf Balkenende, Marcus Antonius Verschuuren, Gabriel Sebastian Lozano Barbero, Shunsuke Murai
  • Publication number: 20130190628
    Abstract: In order to guide electromagnetic waves in the terahertz range over long distances of several meters with low bending losses and large bandwidth, a device, a system and a method are provided such that electromagnetic waves in the terahertz range can be coupled into a wire having a core structure and at least one confinement structure, wherein the confinement structure extends continuously along a length of the wire.
    Type: Application
    Filed: October 5, 2011
    Publication date: July 25, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Lorenzo Tripodi, Jaime Gomez Rivas, Peter Gerard Van Leuven, Martijn Constant Van Beurden, Audrey Anne-Marie Berrier, Marion Kornelia Matters-Kammerer
  • Patent number: 8480958
    Abstract: A metal nanoantenna for use in a biosensing device is disclosed. The metal nanoantenna is arranged to exhibit at least two particle plasmon resonances or surface plasmon resonances (SPRs). The nanoantenna is for use in a sensor and allows detection at low concentration of biological components. In one aspect, the nanoantenna can have an asymmetric structural configuration and spectrally separated resonances. In one aspect, there is a location in its structure providing local electromagnetic field enhancement at all of the SPRs. The metal nanoantenna can be used for background free measuring of a quantity of a biological component.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: July 9, 2013
    Assignee: Stichting IMEC Nederland
    Inventors: Jaime Gomez Rivas, Ruth W. I. De Boer, Olaf Janssen, Arun Narayanaswamy, Erik M. H. P. Van Dijk, Marcus Verschuuren
  • Publication number: 20120305772
    Abstract: A device for analyzing a sample using radiation in the terahertz frequency range is provided. The device comprises a transmitter (3) comprising a THz signal generator (5, 6, 7; 51) for generating an electromagnetic THz signal, the THz signal generator comprising a nonlinear transmission line (7; 52). The device further comprises a surface plasmon polariton generating unit (8) adapted to convert the THz signal into a surface plasmon polariton. The transmitter (3) and the surface plamon polariton generating unit (8) are either integrated on one common substrate or on two separate substrates.
    Type: Application
    Filed: February 7, 2011
    Publication date: December 6, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Lorenzo Tripodi, Jaime Gomez Rivas, Ullrich Richard Rudolf Pfeiffer, Peter Gunther Haring Bolivar
  • Publication number: 20120220471
    Abstract: A metal nanoantenna for use in a biosensing device is disclosed. The metal nanoantenna is arranged to exhibit at least two particle plasmon resonances or surface plasmon resonances (SPRs). The nanoantenna is for use in a sensor and allows detection at low concentration of biological components. In one aspect, the nanoantenna can have an asymmetric structural configuration and spectrally separated resonances. In one aspect, there is a location in its structure providing local electromagnetic field enhancement at all of the SPRs. The metal nanoantenna can be used for background free measuring of a quantity of a biological component.
    Type: Application
    Filed: May 8, 2012
    Publication date: August 30, 2012
    Applicant: STICHTING IMEC NEDERLAND
    Inventors: JAIME GOMEZ RIVAS, RUTH W.I. DE BOER, OLAF JANSSEN, ARUN NARAYANASWAMY, ERIK M.H.P. VAN DIJK, MARCUS VERSCHUUREN
  • Publication number: 20120074323
    Abstract: A THz frequency range antenna is provided which comprises: a semiconductor film (3) having a surface adapted to exhibit surface plasmons in the THz frequency range. The surface of the semiconductor film (3) is structured with an antenna structure (4) arranged to support localized surface plasmon resonances in the THz frequency range.
    Type: Application
    Filed: June 4, 2010
    Publication date: March 29, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Jaime Gomez rivas, Vincenzo Giannini, Audrey Anne-Marie Berrier, Stefan Alexander Maier, Marion Matters-Kammerer, Lorenzo Tripodi
  • Publication number: 20110222066
    Abstract: The invention relates to an assembly for detecting the presence of a target based on a detection of a resonance associated to surface polaritons, such as long-range surface exciton polaritons (LRSEP). The invention relates to an assembly to be used in connection with a bio-sensor. The assembly comprising a carrier substrate (1) and a sensor layer (2) positioned on the carrier substrate. The sensor layer is of a material having a complex permittivity with an imaginary part being greater than or similar to the real part.
    Type: Application
    Filed: September 24, 2009
    Publication date: September 15, 2011
    Applicant: STICHTING IMEC NEDERLAND
    Inventors: Manuel Forcales, Jaime Gomez Rivas, Marcus Verschuuren, Vincenzo Giannini
  • Publication number: 20110205543
    Abstract: The present disclosure relates to a gas sensor including a first layer and a second layer superimposed on each other along an interface between the two layers. The first layer includes an array of nanoparticles along the interface, the nanoparticles provided so as to allow, upon illumination with electromagnetic radiation, long range diffractive coupling of surface plasmon resonances resulting in a surface lattice resonance condition. The second layer includes a material that, when exposed to at least one predetermined gas, detectably affects the surface lattice resonance condition. The material of the second layer preferably has a porosity of at least 10%.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicant: STICHTING IMEC NEDERLAND
    Inventors: Peter Offermans, Sywert H. Brongersma, Mercedes Crego Calama, Gabriele Vecchi, Jaime Gomez Rivas
  • Publication number: 20110170103
    Abstract: A metal nanoantenna for use in a biosensing device is disclosed. The metal nanoantenna is arranged to exhibit at least two particle plasmon resonances or surface plasmon resonances (SPRs). The nanoantenna is for use in a sensor and allows detection at low concentration of biological components. In one aspect, the nanoantenna can have an asymmetric structural configuration and spectrally separated resonances. In one aspect, there is a location in its structure providing local electromagnetic field enhancement at all of the SPRs. The metal nanoantenna can be used for background free measuring of a quantity of a biological component.
    Type: Application
    Filed: December 10, 2010
    Publication date: July 14, 2011
    Applicant: Stichting IMEC Nederland
    Inventors: Jaime Gomez Rivas, Ruth W.I. De Boer, Olaf Janssen, Arun Narayanaswamy, Erik M.H.P. Van Dijk, Marcus Verschuuren