Patents by Inventor Jaime Milstein

Jaime Milstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10091517
    Abstract: Systems and methods for a video multi-codec encoder are provided. Video input data including a plurality of video frames is accepted. At least one codec Y subsystem is applied to frame data that includes at least one video frame of the plurality of video frames, where the frame data includes at least an unencoded portion of the plurality of video frames before one or more of the at least one codec Y subsystem is applied. The at least one codec Y subsystem includes at least partial Yi codec functionality. Yi is a codec selected from video codecs ={Y1, . . . , Yn}. At least one codec Z subsystem is applied to the frame data, where the at least one codec Z subsystem includes at least partial Z codec functionality. Video output data is generated including simple Z-encoded video data of the at least one video frame using the frame data.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: October 2, 2018
    Assignee: EXAIMAGE CORPORATION
    Inventor: Jaime Milstein
  • Patent number: 9552486
    Abstract: Systems and methods for content-protecting video codecs are described. At least one embodiment of the invention comprises a system for protecting video content comprising computer memory comprising a stored set of instructions for processing video data; and at least one microprocessor configured to process the video data according to the stored set of instructions, the stored set of instructions requiring identification of data to be removed, at least a portion of which is essential to obtaining a visually acceptable reproduction of video, the stored set of instructions being further configured to replace removed data with data-hiding values, wherein the visually acceptable reproduction of video cannot be generated without a key that enables recovery of enough of the removed data from the data-hiding values that replaced the removed data.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: January 24, 2017
    Assignee: Exaimage Corporation
    Inventor: Jaime Milstein
  • Publication number: 20160283722
    Abstract: Systems and methods for content-protecting video codecs are described. At least one embodiment of the invention comprises a system for protecting video content comprising computer memory comprising a stored set of instructions for processing video data; and at least one microprocessor configured to process the video data according to the stored set of instructions, the stored set of instructions requiring identification of data to be removed, at least a portion of which is essential to obtaining a visually acceptable reproduction of video, the stored set of instructions being further configured to replace removed data with data-hiding values, wherein the visually acceptable reproduction of video cannot be generated without a key that enables recovery of enough of the removed data from the data-hiding values that replaced the removed data.
    Type: Application
    Filed: February 20, 2015
    Publication date: September 29, 2016
    Applicant: Exaimage Corporation
    Inventor: JAIME MILSTEIN
  • Patent number: 9438930
    Abstract: A wavelet transform (WT) is applied to a data stream of high definition video frames, each comprising one or more data channels digitally representing the same image. A WT is applied to each channel. Visual-quality preserving data filters and data substitution techniques are selectively applied that typically lead to at least 90-to-1 compression of the final encoded video frame. Image edge data is extracted and preserved and image noise is reduced to enhance compressibility. After the first WT, primarily low frequency (LL) image data is retained. With each later WT, more non-LL data is retained. Temporal sequences of LL images that result from the final iteration of the wavelet transform are compressed by means of a chain of invertible differenced images. Any color space can be used. Cross-channel conditional substitution is applicable. Complete multi-resolution scalability is incorporated into the encoded product. Extra-high definition video encoding is also achievable.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 6, 2016
    Inventor: Jaime Milstein
  • Publication number: 20160205413
    Abstract: A wavelet transform (WT) is applied to a data stream of high definition video frames, each comprising one or more data channels digitally representing the same image. A WT is applied to each channel. Visual-quality preserving data filters and data substitution techniques are selectively applied that typically lead to at least 90-to-1 compression of the final encoded video frame. Image edge data is extracted and preserved and image noise is reduced to enhance compressibility. After the first WT, primarily low frequency (LL) image data is retained. With each later WT, more non-LL data is retained. Temporal sequences of LL images that result from the final iteration of the wavelet transform are compressed by means of a chain of invertible differenced images. Any color space can be used. Cross-channel conditional substitution is applicable. Complete multi-resolution scalability is incorporated into the encoded product. Extra-high definition video encoding is also achievable.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 14, 2016
    Inventor: Jaime Milstein
  • Patent number: 9277216
    Abstract: A wavelet transform (WT) is applied to a data stream of high definition video frames, each comprising one or more data channels digitally representing the same image. A WT is applied to each channel. Visual-quality preserving data filters and data substitution techniques are selectively applied that typically lead to at least 90-to-1 compression of the final encoded video frame. Image edge data is extracted and preserved and image noise is reduced to enhance compressibility. After the first WT, primarily low frequency (LL) image data is retained. With each later WT, more non-LL data is retained. Temporal sequences of LL images that result from the final iteration of the wavelet transform are compressed by means of a chain of invertible differenced images. Any color space can be used. Cross-channel conditional substitution is applicable. Complete multi-resolution scalability is incorporated into the encoded product. Extra-high definition video encoding is also achievable.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: March 1, 2016
    Inventor: Jaime Milstein
  • Publication number: 20150264371
    Abstract: Systems and methods for a video multi-codec encoder are provided. Video input data including a plurality of video frames is accepted. At least one codec Y subsystem is applied to frame data that includes at least one video frame of the plurality of video frames, where the frame data includes at least an unencoded portion of the plurality of video frames before one or more of the at least one codec Y subsystem is applied. The at least one codec Y subsystem includes at least partial Yi codec functionality. Yi is a codec selected from video codecs ={Y1, . . . , Yn}. At least one codec Z subsystem is applied to the frame data, where the at least one codec Z subsystem includes at least partial Z codec functionality. Video output data is generated including simple Z-encoded video data of the at least one video frame using the frame data.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 17, 2015
    Inventor: Jaime Milstein
  • Patent number: 9049459
    Abstract: Systems and methods for a video multi-codec encoder are provided. Video input data including a plurality of video frames is accepted. At least one codec Y subsystem is applied to frame data that includes at least one video frame of the plurality of video frames, where the frame data includes at least an unencoded portion of the plurality of video frames before one or more of the at least one codec Y subsystem is applied. The at least one codec Y subsystem includes at least partial Yi codec functionality. Yi is a codec selected from video codecs ={Y1, . . . , Yn}. At least one codec Z subsystem is applied to the frame data, where the at least one codec Z subsystem includes at least partial Z codec functionality. Video output data is generated including simple Z-encoded video data of the at least one video frame using the frame data.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: June 2, 2015
    Assignee: Exaimage Corporation
    Inventor: Jaime Milstein
  • Patent number: 8971532
    Abstract: Systems and methods for content-protecting video codecs are described. At least one embodiment of the invention comprises a system for protecting video content comprising computer memory comprising a stored set of instructions for processing video data; and at least one microprocessor configured to process the video data according to the stored set of instructions, the stored set of instructions requiring identification of data to be removed, at least a portion of which is essential to obtaining a visually acceptable reproduction of video, the stored set of instructions being further configured to replace removed data with data-hiding values, wherein the visually acceptable reproduction of video cannot be generated without a key that enables recovery of enough of the removed data from the data-hiding values that replaced the removed data.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 3, 2015
    Assignee: Exaimage Corporation
    Inventor: Jaime Milstein
  • Publication number: 20140233656
    Abstract: A wavelet transform (WT) is applied to a data stream of high definition video frames, each comprising one or more data channels digitally representing the same image. A WT is applied to each channel. Visual-quality preserving data filters and data substitution techniques are selectively applied that typically lead to at least 90-to-1 compression of the final encoded video frame. Image edge data is extracted and preserved and image noise is reduced to enhance compressibility. After the first WT, primarily low frequency (LL) image data is retained. With each later WT, more non-LL data is retained. Temporal sequences of LL images that result from the final iteration of the wavelet transform are compressed by means of a chain of invertible differenced images. Any color space can be used. Cross-channel conditional substitution is applicable. Complete multi-resolution scalability is incorporated into the encoded product. Extra-high definition video encoding is also achievable.
    Type: Application
    Filed: April 25, 2014
    Publication date: August 21, 2014
    Applicant: EXAIMAGE CORPORATION
    Inventor: Jaime MILSTEIN
  • Patent number: 8750383
    Abstract: A wavelet transform (WT) is applied to a data stream of high definition video frames, each comprising one or more data channels digitally representing the same image. A WT is applied to each channel. Visual-quality preserving data filters and data substitution techniques are selectively applied that typically lead to at least 90-to-1 compression of the final encoded video frame. Image edge data is extracted and preserved and image noise is reduced to enhance compressibility. After the first WT, primarily low frequency (LL) image data is retained. With each later WT, more non-LL data is retained. Temporal sequences of LL images that result from the final iteration of the wavelet transform are compressed by means of a chain of invertible differenced images. Any color space can be used. Cross-channel conditional substitution is applicable. Complete multiresolution scalability is incorporated into the encoded product. Extra-high definition video encoding is also achievable.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: June 10, 2014
    Assignee: Exaimage Corporation
    Inventor: Jaime Milstein
  • Publication number: 20130094566
    Abstract: Systems and methods for a video multi-codec encoder are provided. Video input data including a plurality of video frames is accepted. At least one codec Y subsystem is applied to frame data that includes at least one video frame of the plurality of video frames, where the frame data includes at least an unencoded portion of the plurality of video frames before one or more of the at least one codec Y subsystem is applied. The at least one codec Y subsystem includes at least partial Yi codec functionality. Yi is a codec selected from video codecs ={Y1, . . . , Yn}. At least one codec Z subsystem is applied to the frame data, where the at least one codec Z subsystem includes at least partial Z codec functionality. Video output data is generated including simple Z-encoded video data of the at least one video frame using the frame data.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 18, 2013
    Inventor: Jaime MILSTEIN
  • Publication number: 20120183073
    Abstract: A wavelet transform (WT) is applied to a data stream of high definition video frames, each comprising one or more data channels digitally representing the same image. A WT is applied to each channel. Visual-quality preserving data filters and data substitution techniques are selectively applied that typically lead to at least 90-to-1 compression of the final encoded video frame. Image edge data is extracted and preserved and image noise is reduced to enhance compressibility. After the first WT, primarily low frequency (LL) image data is retained. With each later WT, more non-LL data is retained. Temporal sequences of LL images that result from the final iteration of the wavelet transform are compressed by means of a chain of invertible differenced images. Any color space can be used. Cross-channel conditional substitution is applicable. Complete multiresolution scalability is incorporated into the encoded product. Extra-high definition video encoding is also achievable.
    Type: Application
    Filed: January 17, 2011
    Publication date: July 19, 2012
    Inventor: Jaime Milstein