Patents by Inventor Jaime Sánchez Valente
Jaime Sánchez Valente has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220056236Abstract: The present invention is related to a catalytic process, which includes catalytic compositions for depolymerisation and deoxygenation of lignin contained in the biomass for obtaining aromatic hydrocarbons. The catalytic composition consists of at least one non-noble element from group VIIIB of the periodic table supported on a mesoporous matrix composed of an inorganic oxide, which can be alumina surface-modified with a second inorganic oxide with the object of inhibiting the interaction between the active component and the support. The process of lignin depolymerisation consists of dissolving lignin in a mixture of protic liquids, reacting it I a reaction system by batch or in continuous flow at inert and/or reducing atmosphere, at a temperature of between 60 to 320° C. and a pressure of from 5 to 90 kg/cm2.Type: ApplicationFiled: November 1, 2021Publication date: February 24, 2022Inventors: Jose Antonio TOLEDO ANTONIO, Maria Antonia CORTES JACOME, Isidro MEJIA CENTENO, Jorge Alberto GARCIA MARTINEZ, Jose ESCOBAR AGUILAR, Esteban LOPEZ SALINAS, Maria de Lourdes Araceli MOSQUEIRA MONDRAGON, Miguel PEREZ LUNA, Carlos ANGELES CHAVEZ, Jaime SANCHEZ VALENTE, Maria de Lourdes Alejandra GUZMAN CASTILLO, Ana Karina MEDINA MENDOZA
-
Patent number: 11180628Abstract: The present invention is related to a catalytic process, which includes catalytic compositions for depolymerisation and deoxygenation of lignin contained in the biomass for obtaining aromatic hydrocarbons. The catalytic composition consists of at least one non-noble element from group VIIIB of the periodic table supported on a mesoporous matrix composed of an inorganic oxide, which can be alumina surface-modified with a second inorganic oxide with the object of inhibiting the interaction between the active component and the support. The process of lignin depolymerisation consists of dissolving lignin in a mixture of protic liquids, reacting it|a reaction system by batch or in continuous flow at inert and/or reducing atmosphere, at a temperature of between 60 to 320° C. and a pressure of from 5 to 90 kg/cm2.Type: GrantFiled: December 15, 2017Date of Patent: November 23, 2021Assignee: INSTITUTO MEXICANO DEL PETROLEOInventors: Jose Antonio Toledo Antonio, Maria Antonia Cortes Jacome, Isidro Mejia Centeno, Jorge Alberto Garcia Martinez, Jose Escobar Aguilar, Esteban Lopez Salinas, Maria de Lourdes Araceli Mosqueira Mondragon, Miguel Perez Luna, Carlos Angeles Chavez, Jaime Sanchez Valente, Maria de Lourdes Alejandra Guzman Castillo, Ana Karina Medina Mendoza
-
Patent number: 10300466Abstract: The present invention relates to a process for modifying the physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, for the interest of the oil refining industry, in which the conversion of oil heavy fractions into lighter fractions, with a higher commercial value, is carried out. The process produces a modified Faujasite Y-type zeolite, with lower sodium content, as low as 75%, than that of the starting Faujasite Y-type zeolite. A mesoporous material associated with the modified Faujasite Y-type zeolite has an average pore size ranging from 2 to 100 nm, having a bimodal or multimodal pore size distribution. The proportion of modified Faujasite Y-type zeolite with respect to the meso-porous material associated to the Faujasite Y type Zeolite can be regulated through the process operation conditions.Type: GrantFiled: September 12, 2016Date of Patent: May 28, 2019Assignee: INSTITUTO MEXICANO DEL PETROLEOInventors: Hector Armendariz Herrera, Maria de Lourdes Alejandra Guzman Castillo, Francisco Javier Hernandez Beltran, Patricia Perez Romo, Jaime Sanchez Valente, Jose Marie Maurice Julien Fripiat
-
Publication number: 20180258251Abstract: The present invention is related to a catalytic process, which includes catalytic compositions for depolymerisation and deoxygenation of lignin contained in the biomass for obtaining aromatic hydrocarbons. The catalytic composition consists of at least one non-noble element from group VIIIB of the periodic table supported on a mesoporous matrix composed of an inorganic oxide, which can be alumina surface-modified with a second inorganic oxide with the object of inhibiting the interaction between the active component and the support. The process of lignin depolymerisation consists of dissolving lignin in a mixture of protic liquids, reacting it|a reaction system by batch or in continuous flow at inert and/or reducing atmosphere, at a temperature of between 60 to 320° C. and a pressure of from 5 to 90 kg/cm2.Type: ApplicationFiled: December 15, 2017Publication date: September 13, 2018Inventors: Jose Antonio TOLEDO ANTONIO, Maria Antonia CORTES JACOME, Isidro MEJIA CENTENO, Jorge Alberto GARCIA MARTINEZ, Jose ESCOBAR AGUILAR, Esteban LOPEZ SALINAS, Maria de Lourdes Araceli MOSQUEIRA MONDRAGON, Miguel PEREZ LUNA, Carlos ANGELES CHAVEZ, Jaime SANCHEZ VALENTE, Maria de Lourdes Alejandra GUZMAN CASTILLO, Ana Karina MEDINA MENDOZA
-
Patent number: 10058850Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.Type: GrantFiled: December 23, 2014Date of Patent: August 28, 2018Assignees: INSTITUTO MEXICANO DEL PETROLEO, PEMEX PETROQUIMICA, UNIVERSIDAD POLITECHNICA DE VALENCIAInventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
-
Patent number: 9937486Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.Type: GrantFiled: December 8, 2014Date of Patent: April 10, 2018Assignees: Instituto Mexicano del Petroleo, Pemex Petroquimica, Universidad Politecnica de ValenciaInventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
-
Publication number: 20160375427Abstract: The present invention relates to a process for modifying the physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, for the interest of the oil refining industry, in which the conversion of oil heavy fractions into lighter fractions, with a higher commercial value, is carried out. The process produces a modified Faujasite Y-type zeolite, with lower sodium content, as low as 75%, than that of the starting Faujasite Y-type zeolite. A mesoporous material associated with the modified Faujasite Y-type zeolite has an average pore size ranging from 2 to 100 nm, having a bimodal or multimodal pore size distribution. The proportion of modified Faujasite Y-type zeolite with respect to the meso-porous material associated to the Faujasite Y type Zeolite can be regulated through the process operation conditions.Type: ApplicationFiled: September 12, 2016Publication date: December 29, 2016Inventors: Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Francisco Javier HERNANDEZ BELTRAN, Patricia PEREZ ROMO, Jaime SANCHEZ VALENTE, Jose Marie Maurice JULIEN FRIPIAT
-
Patent number: 9492817Abstract: The physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, are modified by contact with a short-chain polyol and mixture with an ammonium salt followed by thermal treatment to produce a modified Faujasite Y-type zeolite with sodium content as low as 75% below that of the starting Faujasite Y-type zeolite. The modified Faujasite Y-type zeolite is dispersed in a mesoporous material having an average pore size ranging from 2 to 100 nm.Type: GrantFiled: May 13, 2011Date of Patent: November 15, 2016Assignee: INSTITUTO MEXICANO DEL PETROLEOInventors: Héctor Armendáriz Herrera, María de Lourdes Alejandra Guzmán Castillo, Francisco Javier Hernández Beltrán, Patricia Pérez Romo, Jaime Sánchez Valente, José Marie Maurice Julien Fripiat
-
Patent number: 9409156Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.Type: GrantFiled: October 19, 2012Date of Patent: August 9, 2016Assignees: Instituto Mexicano Del Petroleo, Pemex Petroquimica, Universidad Politecnica De ValenciaInventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
-
Patent number: 9321038Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.Type: GrantFiled: October 19, 2012Date of Patent: April 26, 2016Assignees: Instituto Mexicano Del Petroleo, Pemex Petroquimica, Universidad Politecnica De ValenciaInventors: Jaime Sanchez Valente, Jose Manuel Lopez Nieto, Hector Armendariz Herrera, Amada Masso Ramirez, Francisco Ivars Barcelo, Maria de Lourdes Alejandra Guzman Castillo, Roberto Quintana Solorzano, Andrea Rodriguez Hernandez, Paz Del Angel Vicente, Etel Maya Flores
-
Publication number: 20160082424Abstract: The present invention relates to the preparation of Multimetallic Anionic Clays (MACs) through a simple method, which are then shaped by spray-drying into microspheres with adequate mechanical properties, suitable to be fluidized. The microspheres are appropriate for application as additives in the Fluid Catalytic Cracking (FCC) process, i.e. blended with the conventional catalyst, to in situ remove sulfur oxides (SOx) from the combustion gases produced in the regeneration stage of the FCC process, when cracking sulfur-containing hydrocarbon feeds. An oxidation promoter is added to the MACs in order to promote the oxidation of SO2 to SO3, a key step in SOx removal, providing more efficient and versatile materials, which are apt to be used in atmospheres with variable oxygen concentration.Type: ApplicationFiled: December 4, 2015Publication date: March 24, 2016Inventors: Jaime SANCHEZ VALENTE, Roberto QUINTANA SOLORZANO, Lazaro Moises GARCIA MORENO, Rodolfo Juventino MORA VALLEJO, Francisco Javier HERNANDEZ BELTRAN
-
Publication number: 20150151280Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.Type: ApplicationFiled: December 23, 2014Publication date: June 4, 2015Inventors: Jaime SANCHEZ VALENTE, Jose Manuel LOPEZ NIETO, Hector ARMENDARIZ HERRERA, Amada MASSO RAMIREZ, Francisco IVARS BARCELO, Maria de Lourdes Alejandra GUZMAN CASTILLO, Roberto QUINTANA SOLORZANO, Andrea RODRIGUEZ HERNANDEZ, Paz DEL ANGEL VICENTE, Etel MAYA FLORES
-
Publication number: 20150112109Abstract: A layered multimetallic mixed oxide (LMMO) is characterized by one or more diffraction peaks at 5<2?<15, preferably between 10<2?<15. The catalysts can be represented by the general formula: M1 M2 M3 O? wherein M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, or mixtures thereof. M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, or mixtures thereof. M3 is selected from the group of Mo, W and Cr, or mixtures thereof. ? depends on the amount and oxidation state or valence of the other components, also it depends on the starting materials, preparation method and the activation process, and where the catalyst exhibits at least one X-ray diffraction peak between 5<2?<15.Type: ApplicationFiled: December 23, 2014Publication date: April 23, 2015Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
-
Publication number: 20150087505Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.Type: ApplicationFiled: December 8, 2014Publication date: March 26, 2015Inventors: Jaime SANCHEZ VALENTE, Jose Manuel LOPEZ NIETO, Hector ARMENDARIZ HERRERA, Amada MASSO RAMIREZ, Francisco IVARS BARCELO, Maria de Lourdes Alejandra GUZMAN CASTILLO, Roberto QUINTANA SOLORZANO, Andrea RODRIGUEZ HERNANDEZ, Paz DEL ANGEL VICENTE, Etel MAYA FLORES
-
Publication number: 20150086471Abstract: A layered multimetallic oxide catalyst having the formula M1 M2 M3 O? wherein: M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, and mixtures thereof; M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, and mixtures thereof; M3 is selected from the group of Mo, W and Cr, and mixtures thereof; and where said multilayered metallic oxide exhibits a major X-ray diffraction peak between 5<2?<15, is prepared by a process of mixing metallic precursors of M1, M2 and M3 to form a precursor mixture, hydrothermal treatment of the resulting mixture to obtain a homogeneous solid mixture, and thermally treating the solid mixture to activate the solid mixture and obtain said catalyst.Type: ApplicationFiled: December 4, 2014Publication date: March 26, 2015Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
-
Publication number: 20140275685Abstract: A layered multimetallic mixed oxide (LMMO) is characterized by one or more diffraction peaks at 5<2?<15, preferably between 10<2?<15. The catalysts can be represented by the general formula: M1M2M3O? wherein M1 is selected from the group of Ag, Au, Zn, Sn, Rh, Pd, Pt, Cu, Ni, Fe, Co, an alkaline metal, an alkaline earth metal, a rare earth metal, or mixtures thereof. M2 is selected from the group of Ti, Hf, Zr, Sn, Bi, Sb, V, Nb, Ta and P, or mixtures thereof. M3 is selected from the group of Mo, W and Cr, or mixtures thereof. ? depends on the amount and oxidation state or valence of the other components, also it depends on the starting materials, preparation method and the activation process, and where the catalyst exhibits at least one X-ray diffraction peak between 5<2?<15.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Inventors: Jaime SANCHEZ VALENTE, Enelio TORRES GARCIA, Hector ARMENDARIZ HERRERA, Maria de Lourdes Alejandra GUZMAN CASTILLO, Andrea RODRIGUEZ HERNANDEZ, Roberto QUINTANA SOLORZANO, Maiby VALLE ORTA, Jose Manuel LOPEZ NIETO
-
Publication number: 20140114109Abstract: Oxidative dehydrogenation of light paraffins, such as ethane at moderate temperatures (<500° C.) to produce ethylene without the formation of side products such as acetic acid and/or other oxygenated hydrocarbons is achieved using tellurium-free, multimetallic catalysts possessing orthorhombic M1 phase and other crystalline structures that have an important role for obtaining high performance catalysts for the oxidative dehydrogenation of ethane to ethylene. Such catalysts are prepared using thermal and hydrothermal methods.Type: ApplicationFiled: October 19, 2012Publication date: April 24, 2014Inventors: Jaime SANCHEZ VALENTE, Jose Manuel LOPEZ NIETO, Hector ARMENDARIZ HERRERA, Amada MASSO RAMIREZ, Francisco IVARS BARCELO, Maria de Lourdes Alejandra GUZMAN CASTILLO, Roberto QUINTANA SOLORZANO, Andrea RODRIGUEZ HERNANDEZ, Paz DEL ANGEL VICENTE, Etel MAYA FLORES
-
Publication number: 20130171058Abstract: The present invention relates to a process for modifying the physical and chemical properties of Faujasite Y-type zeolites (FAU), mainly used as a base material of catalyst used in the Fluid Catalytic Cracking (FCC) process, for the interest of the oil refining industry, in which the conversion of oil heavy fractions into lighter fractions, with a higher commercial value, is carried out. More specifically, the present invention relates to a process for producing in a single step: a) A modified Faujasite Y-type zeolite, with a lower sodium content, as low as 75%, than that of the starting Faujasite Y-type zeolite.Type: ApplicationFiled: May 13, 2011Publication date: July 4, 2013Applicant: INSTITUTO MEXICANO DEL PETROLEOInventors: Héctor Armendáriz Herrera, Maria de Lourdes Alejandra Guzmán Castillo, Francisco Javier Hernández Beltrán, Patricia Pérez Romo, Jaime Sánchez Valente, José Marie Maurice Julien Fripiat
-
Patent number: 8211395Abstract: A procedure for obtaining mixed multimetallic oxides derived from hydrotalcite type compounds, characterized in that the laminar metallic hydroxides obtained are constituted by three or four metallic cations, forming part of the sheets of the hydrotalcite type material represented by the formula: [M(II)1?x?y?zM(II)?xM(III)yM(III)?z(OH)2](An?y+z/n).mH2O. by a process comprising: (1) preparing an aqueous or organic solution containing three or more cations; (2) preparing an alkaline solution; (3) slowly combining solutions (1) and (2) to cause the co-precipitation of the cations in the form of hydroxides; (4) washing the precipitate containing the hydrotalcites with water, until removal of the non-precipitated ions; (5) drying; and (6) calcining the hydrotalcites.Type: GrantFiled: May 12, 2011Date of Patent: July 3, 2012Assignee: Instituto Mexicano Del PetroleoInventors: Jaime Sanchez Valente, Esteban Lopez Salinas, Manuel Sanchez Cantu, Francisco Hernandez Beltran
-
Publication number: 20120067778Abstract: The present invention relates to the preparation of Multimetallic Anionic Clays (MACs) through a simple method, which are then shaped by spray-drying into microspheres with adequate mechanical properties, suitable to be fluidized. The microspheres are appropriate for application as additives in the Fluid Catalytic Cracking (FCC) process, i.e. blended with the conventional catalyst, to in situ remove sulfur oxides (SOx) from the combustion gases produced in the regeneration stage of the FCC process, when cracking sulfur-containing hydrocarbon feeds. An oxidation promoter is added to the MACs in order to promote the oxidation of SO2 to SO3, a key step in SOx removal, providing more efficient and versatile materials, which are apt to be used in atmospheres with variable oxygen concentration.Type: ApplicationFiled: September 16, 2010Publication date: March 22, 2012Applicant: INSTITUTO MEXICANO DEL PETROLEOInventors: Jaime SÁNCHEZ VALENTE, Roberto QUINTANA SOLÓRZANO, Lázaro Moisés GARCÍA MORENO, Rodolfo Juventino MORA VALLEJO, Francisco Javier HERNÁNDEZ BELTRÁN