Patents by Inventor Jaime Scott Zahorian

Jaime Scott Zahorian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180257927
    Abstract: Micromachined ultrasonic transducers integrated with complementary metal oxide semiconductor (CMOS) substrates are described, as well as methods of fabricating such devices. Fabrication may involve two separate wafer bonding steps. Wafer bonding may be used to fabricate sealed cavities in a substrate. Wafer bonding may also be used to bond the substrate to another substrate, such as a CMOS wafer. At least the second wafer bonding may be performed at a low temperature.
    Type: Application
    Filed: March 8, 2017
    Publication date: September 13, 2018
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Keith G. Fife, Nevada J. Sanchez, Tyler S. Ralston, Jaime Scott Zahorian
  • Patent number: 9987661
    Abstract: Electrical biasing of ultrasonic transducers of an ultrasound device is described. The ultrasonic transducers may be capacitive micromachined ultrasonic transducers (CMUTs). The ultrasonic transducers may be grouped together, with the different groups receiving different bias voltages. The bias voltages for the various groups of ultrasonic transducers may be selected to account for differences between the groups.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: June 5, 2018
    Assignee: Butterfly Network, Inc.
    Inventors: Susan A. Alie, Jaime Scott Zahorian, Kailiang Chen
  • Publication number: 20170360399
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 21, 2017
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife
  • Publication number: 20170360415
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 21, 2017
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena
  • Publication number: 20170360413
    Abstract: A universal ultrasound device having an ultrasound probe includes a semiconductor die; a plurality of ultrasonic transducers integrated on the semiconductor die, the plurality of ultrasonic transducers configured to operate a first mode associated with a first frequency range and a second mode associated with a second frequency range, wherein the first frequency range is at least partially non-overlapping with the second frequency range; and control circuitry configured to: control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the first frequency range, in response to receiving an indication to operate the ultrasound probe in the first mode; and control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the second frequency range, in response to receiving an indication to operate the ultrasound probe in the second mode.
    Type: Application
    Filed: June 21, 2017
    Publication date: December 21, 2017
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife
  • Publication number: 20170360397
    Abstract: A universal ultrasound device having an ultrasound includes a semiconductor die; a plurality of ultrasonic transducers integrated on the semiconductor die, the plurality of ultrasonic transducers configured to operate a first mode associated with a first frequency range and a second mode associated with a second frequency range, wherein the first frequency range is at least partially non-overlapping with the second frequency range; and control circuitry configured to: control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the first frequency range, in response to receiving an indication to operate the ultrasound probe in the first mode; and control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the second frequency range, in response to receiving an indication to operate the ultrasound probe in the second mode.
    Type: Application
    Filed: January 25, 2017
    Publication date: December 21, 2017
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife
  • Publication number: 20170365774
    Abstract: An ultrasound-on-a-chip device has an ultrasonic transducer substrate with plurality of transducer cells, and an electrical substrate. For each transducer cell, one or more conductive bond connections are disposed between the ultrasonic transducer substrate and the electrical substrate. Examples of electrical substrates include CMOS chips, integrated circuits including analog circuits, interposers and printed circuit boards.
    Type: Application
    Filed: June 19, 2017
    Publication date: December 21, 2017
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Jaime Scott Zahorian, Paul Francis Cristman, Keith G. Fife
  • Publication number: 20170360414
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 21, 2017
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena
  • Publication number: 20170360405
    Abstract: A system comprising a multi-modal ultrasound probe configured to operate in a plurality of operating modes associated with a respective plurality of configuration profiles; and a computing device coupled to the handheld multi-modal ultrasound probe and configured to, in response to receiving input indicating an operating mode selected by a user, cause the multi-modal ultrasound probe to operate in the selected operating mode.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 21, 2017
    Applicant: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife, David Elgena
  • Publication number: 20170157646
    Abstract: Electrical biasing of ultrasonic transducers of an ultrasound device is described. The ultrasonic transducers may be capacitive micromachined ultrasonic transducers (CMUTs). The ultrasonic transducers may be grouped together, with the different groups receiving different bias voltages. The bias voltages for the various groups of ultrasonic transducers may be selected to account for differences between the groups.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 8, 2017
    Applicant: Butterfly Network, Inc.
    Inventors: Susan A. Alie, Jaime Scott Zahorian, Kailiang Chen