Patents by Inventor Jainhai Qi

Jainhai Qi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7795675
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 14, 2010
    Assignee: Siliconix Incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen
  • Patent number: 7435650
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: October 14, 2008
    Assignee: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi
  • Patent number: 7291884
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: November 6, 2007
    Assignee: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi
  • Patent number: 7268032
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench. The polysilicon material in each termination trenches.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 11, 2007
    Assignee: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen
  • Patent number: 7045857
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench. The polysilicon material in each termination trenches.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: May 16, 2006
    Assignee: Siliconix Incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi, Qufei Chen
  • Publication number: 20060019448
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench. The polysilicon material in each termination trenches.
    Type: Application
    Filed: September 21, 2005
    Publication date: January 26, 2006
    Applicant: Siliconix incorporated
    Inventors: Mohamed Darwish, Kyle Terrill, Jainhai Qi, Qufei Chen
  • Publication number: 20060011976
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench. The polysilicon material in each termination trenches.
    Type: Application
    Filed: September 21, 2005
    Publication date: January 19, 2006
    Applicant: Siliconix incorporated
    Inventors: Mohamed Darwish, Kyle Terrill, Jainhai Qi, Qufei Chen
  • Publication number: 20050215011
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The drain-drift region can be doped more heavily than the conventional“drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance. The device can be terminated by a plurality of polysilicon-filled termination trenches located near the edge of the die, with the polysilicon in each termination trench being connected to the mesa adjacent the termination trench. The polysilicon material in each termination trenches.
    Type: Application
    Filed: March 26, 2004
    Publication date: September 29, 2005
    Applicant: Siliconix incorporated
    Inventors: Mohamed Darwish, Kyle Terrill, Jainhai Qi, Qufei Chen
  • Publication number: 20040227182
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance.
    Type: Application
    Filed: June 21, 2004
    Publication date: November 18, 2004
    Applicant: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi
  • Publication number: 20040038467
    Abstract: A trench MIS device is formed in a P-epitaxial layer that overlies an N-epitaxial layer and an N+ substrate. In one embodiment, the device includes a thick oxide layer at the bottom of the trench and an N-type drain-drift region that extends from the bottom of the trench to the N-epitaxial layer. The thick insulating layer reduces the capacitance between the gate and the drain and therefore improves the ability of the device to operate at high frequencies. Preferably, the drain-drift region is formed at least in part by fabricating spacers on the sidewalls of the trench and implanting an N-type dopant between the sidewall spacers and through the bottom of the trench. The thick bottom oxide layer is formed on the bottom of the trench while the sidewall spacers are still in place. The drain-drift region can be doped more heavily than the conventional “drift region” that is formed in an N-epitaxial layer. Thus, the device has a low on-resistance.
    Type: Application
    Filed: June 4, 2003
    Publication date: February 26, 2004
    Applicant: Siliconix incorporated
    Inventors: Mohamed N. Darwish, Kyle W. Terrill, Jainhai Qi