Patents by Inventor Jake Joo

Jake Joo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220066092
    Abstract: Provided is an optical waveguide comprising a core surrounded by a cladding, wherein the core is in the shape of a trapezoid with sidewall angles between 60° and 85° and an opto-electronic circuit comprising the optical waveguide. Operational characteristics of the optical waveguide are shown to be superior to those of incumbent devices.
    Type: Application
    Filed: August 6, 2021
    Publication date: March 3, 2022
    Inventors: Michael K. Gallagher, Masaki Kondo, Jake Joo, James F. Ryley, Yi Shen, Curtis Williamson, Zhebin Zhang
  • Publication number: 20220002474
    Abstract: Compositions for forming polymer layers useful in the manufacture of optical devices, particularly optical waveguides, and methods of forming such devices are provided.
    Type: Application
    Filed: June 3, 2021
    Publication date: January 6, 2022
    Inventors: Michael K. Gallagher, Masaki Kondoh, Jake Joo, Yi Shen, Zhebin Zhang
  • Patent number: 10982134
    Abstract: A polymer composite comprising quantum dots; said polymer composite comprising: (a) quantum dots; (b) polymerized units of a first compound having at least one readily polymerizable vinyl group, a molecular weight from 300 to 20,000 and at least one continuous acyclic hydrocarbyl chain of at least five carbon atoms; and (c) polymerized units of a second compound having at least one readily polymerizable vinyl group and a molecular weight from 100 to 750; wherein a readily polymerizable vinyl group is part of a (meth)acrylate ester group or is attached directly to an aromatic ring, and the molecular weight of the first compound minus the molecular weight of the second compound is at least 100.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: April 20, 2021
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Jessica Ye Huang, Zhifeng Bai, Liang Chen, Jake Joo, Ing-Feng Hu, James C. Taylor
  • Patent number: 10894916
    Abstract: A polymer composite comprising quantum dots. The polymer composite comprises: (a) quantum dots; (b) a first polymer having a molecular weight from 1,000 to 100,000 and a solubility parameter from 12 to 17 (J/cm3)1/2; (c) a second polymer comprising polymerized units of a first compound comprising at least one readily polymerizable vinyl group and having a molecular weight from 72 to 500, wherein the second polymer has a solubility parameter from 16.5 to 20 (J/cm3)1/2; and (d) a third polymer comprising polymerized units of a second compound comprising at least two readily polymerizable vinyl groups and having a molecular weight from 72 to 2000; wherein the first polymer encapsulates the quantum dots; wherein a readily polymerizable vinyl group is part of a (meth)acrylate ester group or is attached directly to an aromatic ring.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: January 19, 2021
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Liang Chen, Jake Joo, Yuming Lai, Zhifeng Bai, Jessica Ye Huang, James C. Taylor
  • Patent number: 10889675
    Abstract: A polymer resin comprising: (a) quantum dots, (b) a compound of formula (I) (I) wherein R1 is hydrogen or methyl and R2 is a C6-C20 aliphatic polycyclic substituent, and (c) a block or graft copolymer having Mn from 50,000 to 400,000 and comprising from 10 to 100 wt % polymerized units of styrene and from 0 to 90 wt % of a non-styrene block; wherein the non-styrene block has a van Krevelen solubility parameter from 15.0 to 17.5 (J/cm3)1/2.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: January 12, 2021
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Zhifeng Bai, Jake Joo, James C. Taylor, Liang Chen, Valeriy V. Ginzburg, Jessica Ye Huang, Christopher J. Tucker
  • Publication number: 20200299573
    Abstract: A method of preparing a semiconductor nanocrystal-silicate composite without significantly reducing the quantum yield of the semiconductor nanocrystal, a composite prepared from the method, and a film and an electronic device comprising the composite.
    Type: Application
    Filed: March 30, 2016
    Publication date: September 24, 2020
    Inventors: Bo Lv, Xiuyan Wang, Yan Huang, Xiaofan Ren, Jake Joo, Ping Zhu
  • Patent number: 10510924
    Abstract: Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; where the second end is opposed to the first end; and two first endcaps, one of which contacts the first end and the other of which contacts the second end respectively of the one-dimensional semiconducting nanoparticle; where the first endcap that contacts the first end comprises a first semiconductor and where the first endcap extends from the first end of the one-dimensional semiconducting nanoparticle to form a first nanocrystal heterojunction; where the first endcap that contacts the second end comprises a second semiconductor; where the first endcap extends from the second end of the one-dimensional semiconducting nanoparticle to form a second nanocrystal heterojunction; and where the first semiconductor and the second semiconductor are chemically different from each other.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: December 17, 2019
    Assignees: The Board of Trustees of the University of Illinois, Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, Peter Trefonas, III, Kishori Deshpande, Jake Joo
  • Patent number: 10472563
    Abstract: The present invention provides methods for making polymerizable monomer compositions comprising purifying a (b) monomer mixture of (i) one or more monomers having at least two polymerizable vinyl groups and (ii) one or more monomers having a single polymerizable vinyl group as part of a (meth)acrylate ester group by any one or more of treating the monomer mixture in an activated porous alumina or silica column, sieve drying the monomer mixture in a vacuum followed by drying over dried molecular sieves having average pore sizes of from 2 to 20 Angstroms, freeze-pump-thaw (FPT) treating by freezing the monomer mixture in a vessel or container to a temperature below ?75° C., degassing the monomer mixture by application of vacuum in the range of 102 to 10?2 Pa, sealing the vessel or container under vacuum, and thawing the composition to room temperature; and, combining in an inert gas atmosphere the resulting monomer mixture (b) with a composition (a) of quantum dots in dry form or organic solvent solution.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 12, 2019
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Liang Chen, Leslie E. O'Leary, Zhifeng Bai, Yuming Lai, Jake Joo
  • Publication number: 20190085112
    Abstract: A polymer resin comprising: (a) quantum dots, (b) a compound of formula (I) (I) wherein R1 is hydrogen or methyl and R2 is a C6-C20 aliphatic polycyclic substituent, and (c) a block or graft copolymer having Mn from 50,000 to 400,000 and comprising from 10 to 100 wt % polymerized units of styrene and from 0 to 90 wt % of a non-styrene block; wherein the non-styrene block has a van Krevelen solubility parameter from 15.0 to 17.5 (J/cm3)1/2.
    Type: Application
    Filed: May 12, 2017
    Publication date: March 21, 2019
    Inventors: Zhifeng Bai, Jake Joo, James C. Taylor, Liang Chen, Valerity V. Ginzburg, Jessica Ye Huang, Christopher J. Tucker
  • Publication number: 20190062626
    Abstract: A polymer composite comprising quantum dots; said polymer composite comprising: (a) quantum dots; (b) polymerized units of a first compound having at least one readily polymerizable vinyl group, a molecular weight from 300 to 20,000 and at least one continuous acyclic hydrocarbyl chain of at least five carbon atoms; and (c) polymerized units of a second compound having at least one readily polymerizable vinyl group and a molecular weight from 100 to 750; wherein a readily polymerizable vinyl group is part of a (meth)acrylate ester group or is attached directly to an aromatic ring, and the molecular weight of the first compound minus the molecular weight of the second compound is at least 100.
    Type: Application
    Filed: February 20, 2017
    Publication date: February 28, 2019
    Inventors: Jessica Ye Huang, Zhifeng BAI, Liang Chen, Jake Joo, Ing-Feng Hu, James C. Taylor
  • Publication number: 20190048256
    Abstract: A polymer composite comprising quantum dots. The polymer composite comprises: (a) quantum dots; (b) a first polymer having a molecular weight from 1,000 to 100,000 and a solubility parameter from 12 to 17 (J/cm3)1/2; (c) a second polymer comprising polymerized units of a first compound comprising at least one readily polymerizable vinyl group and having a molecular weight from 72 to 500, wherein the second polymer has a solubility parameter from 16.5 to 20 (J/cm3)1/2; and (d) a third polymer comprising polymerized units of a second compound comprising at least two readily polymerizable vinyl groups and having a molecular weight from 72 to 2000; wherein the first polymer encapsulates the quantum dots; wherein a readily polymerizable vinyl group is part of a (meth)acrylate ester group or is attached directly to an aromatic ring.
    Type: Application
    Filed: March 31, 2017
    Publication date: February 14, 2019
    Inventors: Liang CHEN, Jake Joo, Yuming Lai, Zhifeng Bai, Jessica Ye Huang, James C. Taylor
  • Publication number: 20190048257
    Abstract: A method for encapsulating quantum dots. The method comprises steps of: (a) mixing quantum dots with a polymer having a molecular weight from 1,000 to 200,000 and a solubility parameter from 14 to 18.75 (J/cm3)1/2 and a solvent to form a mixture; and (b) spray drying the mixture to produce an encapsulated quantum dot powder.
    Type: Application
    Filed: April 3, 2017
    Publication date: February 14, 2019
    Inventors: Jake Joo, Kathleen M. O'Connell, Liang Chen, Daniel L. Dermody, Zhifeng Bai, James C. Taylor
  • Publication number: 20180230377
    Abstract: The present invention provides methods for making polymerizable monomer compositions comprising purifying a (b) monomer mixture of (i) one or more monomers having at least two polymerizable vinyl groups and (ii) one or more monomers having a single polymerizable vinyl group as part of a (meth)acrylate ester group by any one or more of treating the monomer mixture in an activated porous alumina or silica column, sieve drying the monomer mixture in a vacuum followed by drying over dried molecular sieves having average pore sizes of from 2 to 20 Angstroms, freeze-pump-thaw (FPT) treating by freezing the monomer mixture in a vessel or container to a temperature below ?75° C., degassing the monomer mixture by application of vacuum in the range of 102 to 10?2 Pa, sealing the vessel or container under vacuum, and thawing the composition to room temperature; and, combining in an inert gas atmosphere the resulting monomer mixture (b) with a composition (a) of quantum dots in dry form or organic solvent solution.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 16, 2018
    Inventors: Liang Chen, Leslie E. O'Leary, Zhifeng Bai, Yuming Lai, Jake Joo
  • Publication number: 20160225946
    Abstract: Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; where the second end is opposed to the first end; a first node that comprises a first semiconductor; where the first node contacts a radial surface of the one-dimensional semiconducting nanoparticle producing a first heterojunction at the point of contact; and a second node that comprises a second semiconductor; where the second node contacts the radial surface of the one-dimensional semiconducting nanoparticle producing a second heterojunction at the point of contact; where the first heterojunction is compositionally different from the second heterojunction.
    Type: Application
    Filed: August 31, 2015
    Publication date: August 4, 2016
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, Peter Trefonas, III, Kishori Deshpande, Jake Joo
  • Publication number: 20150364645
    Abstract: Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; where the second end is opposed to the first end; and two first endcaps, one of which contacts the first end and the other of which contacts the second end respectively of the one-dimensional semiconducting nanoparticle; where the first endcap that contacts the first end comprises a first semiconductor and where the first endcap extends from the first end of the one-dimensional semiconducting nanoparticle to form a first nanocrystal heterojunction; where the first endcap that contacts the second end comprises a second semiconductor; where the first endcap extends from the second end of the one-dimensional semiconducting nanoparticle to form a second nanocrystal heterojunction; and where the first semiconductor and the second semiconductor are chemically different from each other.
    Type: Application
    Filed: January 16, 2015
    Publication date: December 17, 2015
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, Peter Trefonas, Kishori Deshpande, Jake Joo
  • Patent number: 9123638
    Abstract: Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; where the second end is opposed to the first end; a first node that comprises a first semiconductor; where the first node contacts a radial surface of the one-dimensional semiconducting nanoparticle producing a first heterojunction at the point of contact; and a second node that comprises a second semiconductor; where the second node contacts the radial surface of the one-dimensional semiconducting nanoparticle producing a second heterojunction at the point of contact; where the first heterojunction is compositionally different from the second heterojunction.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 1, 2015
    Assignees: Rohm and Haas Electronic Materials, LLC, The University of Illinois, The Office of Technology Management, Dow Global Technologies LLC
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, Peter Trefonas, Kishori Deshpande, Jake Joo
  • Publication number: 20150243837
    Abstract: Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; a first endcap contacting one of the first end or the second end; where the first endcap comprises a first semiconductor and where the first endcap extends from the one-dimensional nanoparticle to form a first nanocrystal heterojunction; and a second endcap that contacts the first endcap; where the second endcap comprises a second semiconductor and where the second endcap extends from the first endcap to form a second nanocrystal heterojunction; and where the first semiconductor is different from the second semiconductor.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 27, 2015
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, Peter Trefonas, Kishori Deshpande, Jake Joo
  • Patent number: 9066425
    Abstract: Method of manufacturing patterned conductor is provided, comprising: providing a conductivized substrate, wherein the conductivized substrate comprises a substrate and an electrically conductive layer; providing an electrically conductive layer etchant; providing a spinning material; providing a masking fiber solvent; forming a plurality of masking fibers and depositing the plurality of masking fibers onto the electrically conductive layer; exposing the electrically conductive layer to the electrically conductive layer etchant, wherein the electrically conductive layer that is uncovered by the plurality of masking fibers is removed from the substrate, leaving an interconnected conductive network on the substrate covered by the plurality of masking fibers; and, exposing the plurality of masking fibers to the masking fiber solvent, wherein the plurality of masking fibers are removed to uncover the interconnected conductive network on the substrate.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: June 23, 2015
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Jake Joo, Jerome Claracq, Sylvie Vervoort, Mubasher Bashir, Peter Trefonas, Garo Khanarian, Kathleen O'Connell
  • Patent number: 8937294
    Abstract: Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; where the second end is opposed to the first end; and two first endcaps, one of which contacts the first end and the other of which contacts the second end respectively of the one-dimensional semiconducting nanoparticle; where the first endcap that contacts the first end comprises a first semiconductor and where the first endcap extends from the first end of the one-dimensional semiconducting nanoparticle to form a first nanocrystal heterojunction; where the first endcap that contacts the second end comprises a second semiconductor; where the first endcap extends from the second end of the one-dimensional semiconducting nanoparticle to form a second nanocrystal heterojunction; and where the first semiconductor and the second semiconductor are chemically different from each other.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 20, 2015
    Inventors: Moonsub Shim, Nuri Oh, You Zhai, Sooji Nam, Peter Trefonas, Kishori Deshpande, Jake Joo
  • Publication number: 20140290979
    Abstract: Method of manufacturing patterned conductor is provided, comprising: providing a conductivised substrate, wherein the conductivised substrate comprises a substrate and an electrically conductive layer; providing an electrically conductive layer etchant; providing a spinning material; providing a masking fiber solvent; forming a plurality of masking fibers and depositing the plurality of masking fibers onto the electrically conductive layer; exposing the electrically conductive layer to the electrically conductive layer etchant, wherein the electrically conductive layer that is uncovered by the plurality of masking fibers is removed from the substrate, leaving an interconnected conductive network on the substrate covered by the plurality of masking fibers; and, exposing the plurality of masking fibers to the masking fiber solvent, wherein the plurality of masking fibers are removed to uncover the interconnected conductive network on the substrate.
    Type: Application
    Filed: April 1, 2013
    Publication date: October 2, 2014
    Inventors: Jake Joo, Jerome Claracq, Sylvie Vervoort, Mubasher Bashir, Peter Trefonas, Garo Khanarian, Kathleen O'Connell