Patents by Inventor Jake ROCHMAN

Jake ROCHMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11438076
    Abstract: Systems and methods for providing optical quantum communication networks based on rare-earth ion quantum bits (qubits) entrapped in solids are presented. According to one aspect a qubit is provided by an 171Yb3+ ion doped into a YVO crystal structure. A nanophotonic cavity fabricated in the doped crystal structure provides a zero-field energy level structure of the ion with optical transitions between ground and excited states at a wavelength longer than 980 nm. A subspace of the qubit is provided by two lower energy levels at the ground states separated by a microwave frequency of about 675 MHz. Addressing of the optical transitions is via first and second lasers and addressing of microwave transitions at the ground and excited states are via respective microwave sources. A single-shot readout sequence of the qubit based on two consecutive readout sequences on the optical transitions separated by a microwave pumping of the ground states is presented.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: September 6, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Andrei Faraon, Jonathan M. Kindem, Andrei Ruskuc, John G. Bartholomew, Jake Rochman
  • Patent number: 11397343
    Abstract: Systems and methods for providing a microwave-to-optical (M2O) transducer using magneto-optical field interactions with spin states of an ensemble of ions doped into a crystal structure is presented. According to one aspect, the crystal structure is a (171Yb3+:YVO) doped crystal structure that provides a substrate for an on-chip implementation of the transducer. According to one aspect, coupling of microwave and optical signals to the ions is based on respective microwave and optical waveguides fabricated in or on the doped crystal structure. According to another aspect, coupling of microwave and optical signals to the ions is based on respective microwave and optical resonant cavities fabricated in or on the doped crystal structure. Transduction can be based on either a three-level system with near-zero applied external magnetic field or on a four-level system with zero applied external magnetic field. The transducer can operate reversibly as an optical-to-microwave (O2M) transducer.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: July 26, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Andrei Faraon, Jake Rochman, Tian Xie, John G. Bartholomew
  • Publication number: 20210302767
    Abstract: Systems and methods for providing a microwave-to-optical (M2O) transducer using magneto-optical field interactions with spin states of an ensemble of ions doped into a crystal structure is presented. According to one aspect, the crystal structure is a (171Yb3+:YVO) doped crystal structure that provides a substrate for an on-chip implementation of the transducer. According to one aspect, coupling of microwave and optical signals to the ions is based on respective microwave and optical waveguides fabricated in or on the doped crystal structure. According to another aspect, coupling of microwave and optical signals to the ions is based on respective microwave and optical resonant cavities fabricated in or on the doped crystal structure. Transduction can be based on either a three-level system with near-zero applied external magnetic field or on a four-level system with zero applied external magnetic field. The transducer can operate reversibly as an optical-to-microwave (O2M) transducer.
    Type: Application
    Filed: December 9, 2020
    Publication date: September 30, 2021
    Inventors: Andrei FARAON, Jake ROCHMAN, Tian XIE, John G. BARTHOLOMEW
  • Publication number: 20210028863
    Abstract: Systems and methods for providing optical quantum communication networks based on rare-earth ion quantum bits (qubits) entrapped in solids are presented. According to one aspect a qubit is provided by an 171Yb3+ ion doped into a YVO crystal structure. A nanophotonic cavity fabricated in the doped crystal structure provides a zero-field energy level structure of the ion with optical transitions between ground and excited states at a wavelength longer than 980 nm. A subspace of the qubit is provided by two lower energy levels at the ground states separated by a microwave frequency of about 675 MHz. Addressing of the optical transitions is via first and second lasers and addressing of microwave transitions at the ground and excited states are via respective microwave sources. A single-shot readout sequence of the qubit based on two consecutive readout sequences on the optical transitions separated by a microwave pumping of the ground states is presented.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 28, 2021
    Inventors: Andrei FARAON, Jonathan M. KINDEM, Andrei RUSKUC, John G. BARTHOLOMEW, Jake ROCHMAN