Patents by Inventor Jake Smith
Jake Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230151047Abstract: This disclosure provides electrochemically-cleavable linkers with cleavage potentials that are less than the redox potential of the solvent in which the linkers are used. In some applications, the solvent may be water or an aqueous buffer solution. The linkers may be used to link a nucleotide to a bound group. The linkers include a cleavable group which may be one of a methoxybenzyl alcohol, an ester, a propargyl thioether, or a trichloroethyl ether. The linkers may be cleaved in solvent by generating an electrode potential that is less than the redox potential of the solvent. In some implementations, an electrode array may be used to generate localized electrode potentials which selectively cleave linkers bound to the activated electrode. Uses for the linkers include attachment of blocking groups to nucleotides in enzymatic oligonucleotide synthesis.Type: ApplicationFiled: January 20, 2023Publication date: May 18, 2023Inventors: Bichlien Hoang NGUYEN, Jake SMITH
-
Patent number: 11591361Abstract: This disclosure provides electrochemically-cleavable linkers with cleavage potentials that are less than the redox potential of the solvent in which the linkers are used. In some applications, the solvent may be water or an aqueous buffer solution. The linkers may be used to link a nucleotide to a bound group. The linkers include a cleavable group which may be one of a methoxybenzyl alcohol, an ester, a propargyl thioether, or a trichloroethyl ether. The linkers may be cleaved in solvent by generating an electrode potential that is less than the redox potential of the solvent. In some implementations, an electrode array may be used to generate localized electrode potentials which selectively cleave linkers bound to the activated electrode. Uses for the linkers include attachment of blocking groups to nucleotides in enzymatic oligonucleotide synthesis.Type: GrantFiled: January 29, 2021Date of Patent: February 28, 2023Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Bichlien Hoang Nguyen, Jake Smith
-
Publication number: 20220372468Abstract: Fluorophores are used during the synthesis of oligonucleotides to achieve real-time quality control of the synthesis process. Fluorescence may indicate successful addition of individual nucleotides to a growing oligonucleotide strand or removal of a blocking group. The oligonucleotides may be created by enzymatic synthesis using terminal deoxynucleotidyl transferase (TdT). The synthesis is performed on an addressable array so that oligonucleotides with different sequences are created in parallel on different regions of the array. The oligonucleotide sequences are predetermined and the locations of synthesis on the array are controlled. Observed fluorescence is compared to expected locations of fluorescence as determined by the oligonucleotide sequences and the arrangement on the array. Thus, the fidelity of oligonucleotide synthesis is checked as synthesis proceeds. If a variation is found, a mitigating action is taken such as repeating addition of a species of nucleotide or repeating a deblocking step.Type: ApplicationFiled: May 19, 2021Publication date: November 24, 2022Inventors: Bichlien Hoang NGUYEN, Jake SMITH, Karin STRAUSS, Robert CARLSON
-
Publication number: 20220204544Abstract: This disclosure provides electrochemically-cleavable linkers with cleavage potentials that are less than the redox potential of the solvent in which the linkers are used. In some applications, the solvent may be water or an aqueous buffer solution. The linkers may be used to link a nucleotide to a bound group. The linkers include a cleavable group which may be one of a methoxybenzyl alcohol, an ester, a propargyl thioether, or a trichloroethyl ether. The linkers may be cleaved in solvent by generating an electrode potential that is less than the redox potential of the solvent. In some implementations, an electrode array may be used to generate localized electrode potentials which selectively cleave linkers bound to the activated electrode. Uses for the linkers include attachment of blocking groups to nucleotides in enzymatic oligonucleotide synthesis.Type: ApplicationFiled: January 29, 2021Publication date: June 30, 2022Inventors: Bichlien Hoang NGUYEN, Jake SMITH
-
Publication number: 20220184297Abstract: A disclosed drip chamber for an intravenous (IV) therapy system includes a container configured to hold an IV fluid, a drop former suspended over the container, and an inlet port disposed above the drop former and configured to receive the IV fluid from a reservoir. The drop former has an upper end, a lower tip, and an outer surface extending between the upper end and the lower tip. The inlet port is coupled to the outer surface to permit the IV fluid to descend down the outer surface.Type: ApplicationFiled: March 1, 2022Publication date: June 16, 2022Inventors: Eugene MASON, George Mansour, Jake Smith
-
Publication number: 20220171133Abstract: Circuits for generating a pair of qudits in a maximally entangled state and methods of operating such circuits are disclosed. The circuits can be photonic circuits that use a combination of beam splitters, phase shifters, and detectors to produce an entangled pair of d-dimensional qudits from an input set of 4d photons. In a case where d equals 2, a pair of qubits in a Bell state can be generated.Type: ApplicationFiled: June 8, 2021Publication date: June 2, 2022Applicant: Psiquantum, Corp.Inventors: Jake Smith, Konrad Kieling
-
Publication number: 20220145345Abstract: Enzymatic polynucleotide synthesis with a template-independent polymerase is used to create multiple polynucleotides having different, arbitrary sequences on the surface of an array. The array provides a spatially-addressable substrate for solid-phase synthesis. Blocking groups are attached to the 3? ends of polynucleotides on the array. Prior to polynucleotide extension, the blocking groups are removed at a selected location on the array. In an implementation, the blocking groups are acyl groups removed with a negative voltage created at an electrode. The array is then incubated with the polymerase and a single species of nucleotide. Nucleotides are incorporated onto the 3? ends of the polynucleotides without blocking groups. Washing removes the polymerase and free nucleotides. To create polynucleotides with different sequences at different locations on the array, the location where the blocking groups are removed and the species of nucleotide may be changed during repeated cycles of synthesis.Type: ApplicationFiled: November 11, 2020Publication date: May 12, 2022Inventors: Bichlien Hoang NGUYEN, Jake SMITH
-
Publication number: 20220136021Abstract: Multiple polynucleotides having different, arbitrary sequences are synthesized on the surface of an array by spatial control of polymerase activity. The polymerase is a template-independent polymerase such as terminal deoxynucleotidyl transferase (TdT). Spatial control of polymerase activity is implemented by localized changes in redox-pH conditions. A single species of nucleotide is added and incorporated on growing polynucleotide strands at locations on the array where the polymerase is active. A washing step removes the polymerase and free nucleotides. This process may be repeated multiple times changing both the location of polymerase activity and the species of nucleotide thereby synthesizing different polynucleotides in parallel on the surface of the array. Polymerase activity may be regulated by removing a blocking group attached to a His-tag sequence on the polymerase, a change in pH, or release of encapsulated inhibitors.Type: ApplicationFiled: October 30, 2020Publication date: May 5, 2022Inventors: Bichlien Hoang NGUYEN, Jake SMITH
-
Patent number: 11291762Abstract: A disclosed drip chamber for an intravenous (IV) therapy system includes a container configured to hold an IV fluid, a drop former suspended over the container, and an inlet port disposed above the drop former and configured to receive the IV fluid from a reservoir. The drop former has an upper end, a lower tip, and an outer surface extending between the upper end and the lower tip. The inlet port is coupled to the outer surface to permit the IV fluid to descend down the outer surface.Type: GrantFiled: October 15, 2018Date of Patent: April 5, 2022Assignee: CAREFUSION 303, INC.Inventors: Eugene Mason, George Mansour, Jake Smith
-
Publication number: 20210403968Abstract: A switchable hydrophilic surface is created by attaching electrochemically switchable hydrophilicity polymers to the surface of a microelectrode array. Ferrocene polymers are one example of electrochemically switchable hydrophilicity polymers. Activation of electrodes in the microelectrode array changes the oxidation state of metal ions which switches the polymers between hydrophobic and hydrophilic conformations. Selective activation of electrodes can create patterns of wettability on the microelectrode array that may be varied in real time. The switchable hydrophilic surface may be used to control solid-phase synthesis of polymers. Growing polymers may be selectively extended at locations on the microelectrode array that are hydrophilic. The pattern of hydrophobic and hydrophilic regions can be changed during sequential rounds of synthesis to create a variety of different polymers at different locations on the surface of the microelectrode array.Type: ApplicationFiled: June 30, 2020Publication date: December 30, 2021Inventors: Bichlien NGUYEN, Jake SMITH
-
Publication number: 20210371891Abstract: De novo polynucleotide synthesis is performed with a substrate-bound polymerase. The polymerase is attached to a solid substrate such as a microelectrode array. The polymerase adds nucleotides to growing polynucleotides strands that are also attached to the solid substrate. Spatial control of polymerase activity is achieved by changing the rate of nucleotide polymerization at selected locations on the surface of the solid substrate. The rate of polymerization is changed by inhibiting or promoting activity of the polymerase. In some implementations, activation of electrodes in the microelectrode array changes the rate of nucleotide polymerization. Nucleotides are added to the growing polynucleotide strands at areas where the polymerase is active. By varying the locations where the substrate-bound polymerase is active and the species of nucleotide added, a population of polynucleotides with different, arbitrary sequences is synthesized on the surface of the solid substrate.Type: ApplicationFiled: May 28, 2020Publication date: December 2, 2021Inventors: Bichlien NGUYEN, Jake SMITH, Karin STRAUSS
-
Publication number: 20210340615Abstract: A universal template strand built with universal base analogs is used as a template for polynucleotide synthesis. The universal template strand can hybridize to any sequence of nucleotides. A new polynucleotide is synthesized by using a polymerase to extend a primer hybridized to the universal template strand. Unlike primer extension in polymerase chain reactions, base pairing with nucleotides in the template strand does not specify the sequence of the new polynucleotide. Instead, the sequence of the new polynucleotide is specified by the order of addition of protected nucleotides. After addition of a single species of protected nucleotide, the blocking group is removed and another protected nucleotide is added. The order of nucleotide addition can be varied to create any sequence. After synthesis, the polynucleotide can be dehybridized from the universal template strand. The universal template strand may then be reused to synthesize a different polynucleotide.Type: ApplicationFiled: May 1, 2020Publication date: November 4, 2021Inventors: Bichlien Nguyen, Jake Smith, Robert Carlson, Karin Strauss
-
Publication number: 20210238577Abstract: This disclosure provides electrochemically-cleavable linkers with cleavage potentials that are less than the redox potential of the solvent in which the linkers are used. In some applications, the solvent may be water or an aqueous buffer solution. The linkers may be used to link a nucleotide to a bound group. The linkers include a cleavable group which may be one of a methoxybenzyl alcohol, an ester, a propargyl thioether, or a trichloroethyl ether. The linkers may be cleaved in solvent by generating an electrode potential that is less than the redox potential of the solvent. In some implementations, an electrode array may be used to generate localized electrode potentials which selectively cleave linkers bound to the activated electrode. Uses for the linkers include attachment of blocking groups to nucleotides in enzymatic oligonucleotide synthesis.Type: ApplicationFiled: February 4, 2020Publication date: August 5, 2021Inventors: Bichlien NGUYEN, Jake Smith, Karin Strauss
-
Publication number: 20210205775Abstract: Substrates for solid-phase synthesis are reused by freeing synthesized polymers without removing the linkers that hold the polymers to the substrate. The linkers may be made of oligonucleotides or polypeptides. In an implementation, the polymers are released by cleavage of the linkers and then the truncated linkers are regenerated by adding back the portion that was removed. In an implementation, molecular bonds between the linkers and the polymers are cleaved releasing the polymers while leaving the linkers available for reuse without regeneration. In an implementation, single-stranded oligonucleotide linkers are hybridized to complementary strands that hold the polymers to the substrate with double-stranded oligonucleotide complexes. The double-stranded oligonucleotide complexes are denatured releasing the polymers while leaving the original linkers attached to the substrate. The polymers that are synthesized with these techniques may be the same or different type of molecules than the linkers.Type: ApplicationFiled: January 6, 2020Publication date: July 8, 2021Inventors: Bichlien NGUYEN, Yuan-Jyue CHEN, Jake SMITH
-
Publication number: 20210155923Abstract: Electrically controlled hybridization is used to selectively assemble oligonucleotides on the surface of a microelectrode array. Controlled activation of individual electrodes in the microelectrode array attracts oligonucleotides in solution to specific regions of the array where they hybridize to other oligonucleotides anchored on the array. The oligonucleotides that hybridize may provide locations for subsequent oligonucleotides to hybridize. The active electrodes and the oligonucleotides in solution may be varied during each round of synthesis. This allows for multiple oligonucleotides each with different and specific sequences to be created in parallel. This is accomplished without the use of phosphoramidite chemical synthesis or template-independent DNA polymerase enzymatic synthesis. Oligonucleotides created with these techniques may be used to encode digital data. Fully assembled oligonucleotides may be separated from the array and sequenced, stored, or otherwise processed.Type: ApplicationFiled: November 27, 2019Publication date: May 27, 2021Inventors: Yuan-Jyue CHEN, Bichlien NGUYEN, Jake SMITH, Karin STRAUSS
-
Publication number: 20210106806Abstract: Flow stop assemblies are described herein. A flow stop assembly configured to control flow through a tubing includes a flow stop base and a pincher. The flow stop base includes a base wall, at least one pincher guard, a tubing guide, a pincher recess, a pincher protrusion, and a base extension. The pincher is movable relative to the base extension and is configured to move between a flow position and an occlusion position, wherein in the flow position the pincher surface is spaced apart from the pincher protrusion and in the occlusion position, the pincher surface is disposed adjacent to the pincher protrusion and is configured to obstruct flow through the tubing.Type: ApplicationFiled: October 9, 2019Publication date: April 15, 2021Inventors: Jake Smith, Soon Park
-
Publication number: 20200114066Abstract: A disclosed drip chamber for an intravenous (IV) therapy system includes a container configured to hold an IV fluid, a drop former suspended over the container, and an inlet port disposed above the drop former and configured to receive the IV fluid from a reservoir. The drop former has an upper end, a lower tip, and an outer surface extending between the upper end and the lower tip. The inlet port is coupled to the outer surface to permit the IV fluid to descend down the outer surface.Type: ApplicationFiled: October 15, 2018Publication date: April 16, 2020Inventors: Eugene MASON, George MANSOUR, Jake SMITH
-
Publication number: 20180313764Abstract: An impact-driven apparatus and method to achieve triboluminescence of homochiral API crystals as a measurement tool for rapidly assessing the presence of trace crystallinity within nominally amorphous pharmaceutical powders. The apparatus may include a kinetic energy director and two plates which hold a sample for testing. The triboluminescence may also be achieve by an acoustic transducer.Type: ApplicationFiled: September 27, 2016Publication date: November 1, 2018Applicant: Purdue Research FoundationInventors: Garth Jason Simpson, Paul David Schmitt, Scott Robert Griffin, Casey Jake Smith
-
Publication number: 20160007639Abstract: This application concerns compositions including at least one whole or partial food fruit component and/or at least one whole or partial food vegetable component. Also, methods for preparing a fruit and vegetable-based food product formulation for animal or human consumption including blending said composition and a liquid in a blender to form a slurry. Further, uses of said composition as a nutritional source or supplement for humans or animal.Type: ApplicationFiled: July 11, 2014Publication date: January 14, 2016Inventors: Jake Smith, Jeff Wasden, Christine Beltran
-
Patent number: 8676843Abstract: A system and method for failure recovery in a multiple processing node system are described herein. Each node can be adapted to store a backup copy of its database portion and/or results to disk storage or memory of at least one other node. In the event of a failure of a node, the replacement node can be adapted to transfer or copy the backup copy of the database portion of the failed node from the failed node's neighbors to the replacement node's disk storage or memory in between database operations. Before the transfer or copy of the backup copy is completed, the replacement node can be adapted to perform database operations in part on the portion of the backup copy the replacement node has already received and in part on the backup copy stored at the neighboring node(s).Type: GrantFiled: November 14, 2002Date of Patent: March 18, 2014Assignee: LexiNexis Risk Data Management Inc.Inventors: David Bayliss, Richard Chapman, Jake Smith, Ole Poulsen, Gavin Halliday, Nigel Hicks