Patents by Inventor Jakob Wedel-Heinen
Jakob Wedel-Heinen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9797374Abstract: An upwind wind turbine comprising a tower and a rotor is described. The wind turbine additionally includes a pressure-sensing device supported by the tower at a location within the wake of the rotor. The pressure-sensing device is configured to sense air pressure and provide a signal indicative of the sensed air pressure to a wind turbine controller for use in controlling the rotor of the wind turbine.Type: GrantFiled: July 26, 2011Date of Patent: October 24, 2017Assignee: VESTAS WIND SYSTEMS A/SInventor: Jens Jakob Wedel-Heinen
-
Patent number: 8907511Abstract: A wind turbine has a Lidar device to sense wind conditions upstream of the wind turbine. Signals from the wind turbine are processed to detect an extreme event. On detection the system controller takes the necessary evasive action depending on the nature and severity of the extreme condition detected. This may include a significant reduction in power generated, complete shutdown of the generator and yawing of the nacelle and rotor to reduce loading on the rotor blades.Type: GrantFiled: December 21, 2010Date of Patent: December 9, 2014Assignee: Vestas Wind Systems A/SInventors: Robert Bowyer, Chris Spruce, Justin Creaby, Jens Jakob Wedel-Heinen
-
Patent number: 8505587Abstract: For use in the manufacture of reinforcement layers for flexible pipes which are capable of absorbing compressive or tensile forces, and which are used for the transport of oil and gas, a thermoplastic material is applied to a strength-imparting layer. The strength-imparting layers are reeled on reels, and following unreeling, are laminated by application of heat and in direct continuation applied to the pipe. The strength-imparting layer includes a polymer reinforced with at least 20% by volume of fibers. The thermoplastic is of a reversible type (it may change from being relatively soft, but non-sticky to being sticky by changes in temperature). The method allows manufacture of very strong reinforcements for flexible pipes which cannot be manufactured using solid material, e.g., steel, since high performing bending forces are required in shaping. A reinforcement element is provided which is capable of resisting instantaneous shock loads as the thermoplastic material is protective.Type: GrantFiled: October 25, 2010Date of Patent: August 13, 2013Assignee: National Oilwell Varco Denmark I/SInventors: Kristian Glejbol, Jakob Wedel-Heinen
-
Publication number: 20130189102Abstract: An upwind wind turbine comprising a tower and a rotor is described. The wind turbine additionally includes a pressure-sensing device supported by the tower at a location within the wake of the rotor. The pressure-sensing device is configured to sense air pressure and provide a signal indicative of the sensed air pressure to a wind turbine controller for use in controlling the rotor of the wind turbine.Type: ApplicationFiled: July 26, 2011Publication date: July 25, 2013Inventor: Jens Jakob Wedel-Heinen
-
Publication number: 20130033040Abstract: A wind turbine has a Lidar device to sense wind conditions upstream of the wind turbine. Signals from the wind turbine are processed to detect an extreme event. On detection the system controller takes the necessary evasive action depending on the nature and severity of the extreme condition detected. This may include a significant reduction in power generated, complete shutdown of the generator and yawing of the nacelle and rotor to reduce loading on the rotor blades.Type: ApplicationFiled: December 21, 2010Publication date: February 7, 2013Inventors: Robert Bowyer, Christopher Spruce, Justin Creaby, Jens Jakob Wedel-Heinen
-
Publication number: 20110067776Abstract: For use in the manufacture of reinforcement layers for flexible pipes which are capable of absorbing compressive or tensile forces, and which are used for the transport of oil and gas, a thermoplastic material is applied to a strength-imparting layer. The strength-imparting layers are reeled on reels, and following unreeling they are laminated by application of heat and in direct continuation applied to the flexible pipe. The strength-imparting layer expediently consists of a polymer which is reinforced with at least 20% by volume of fibres. The thermoplastic material is of a reversible type, i.e. it may change from being relatively soft, but non-sticky to being sticky by changes in temperature. The use of the method according to the invention allows manufacture of very strong reinforcements for flexible pipes which cannot be manufactured using a solid material, such as steel, since high preforming bending forces are required in the shaping.Type: ApplicationFiled: October 25, 2010Publication date: March 24, 2011Applicant: NKT FLEXIBLES I/SInventors: Kristian Glejbøl, Jakob Wedel-Heinen
-
Patent number: 7842149Abstract: For use in the manufacture of reinforcement layers for flexible pipes which are capable of absorbing compressive or tensile forces, and which are used for the transport of oil and gas, a thermoplastic material is applied to a strength-imparting layer. The strength-imparting layers are reeled on reels, and following unreeling they are laminated by application of heat and in direct continuation applied to the flexible pipe. The strength-imparting layer expediently consists of a polymer which is reinforced with at least 20% by volume of fibres. The thermoplastic material is of a reversible type, i.e. it may change from being relatively soft, but non-sticky by changes in temperature. The use of the method according to the invention allows manufacture of very strong reinforcements for flexible pipes which cannot be manufactured using a solid material, such as steel, since high performing bending forces are required in the shaping.Type: GrantFiled: October 10, 2006Date of Patent: November 30, 2010Assignee: NKT Flexibles I/SInventors: Kristian Glejbøl, Jakob Wedel-Heinen
-
Patent number: 7302973Abstract: A reinforced flexible pipeline (1), which has an inner liner (3) whose inner side engages an inner reinforcement layer (2) that may be formed by a so-called carcass, and on whose outer side at least a strength-imparting reinforcement layer (4, 5, 6, 7) is provided, has an additional barrier layer (9, 10, 11) which is arranged between the inner liner and the inner reinforcement layer. The additional barrier layer is thermally insulating and/or chemically protecting. The additional barrier layer may be formed as a tape (9) which is wound around the inner reinforcement layer, or may be composed of locking profiles (10, 11) which are wound around the flexible pipeline in a helix. The additional barrier layer (9, 10, 11) may be made completely or partly of a polymer which may be thermoplastic, or is cross-linked completely or partly. Hereby, the pipe may be protected against temperatures above e.g. 13° C. and may also be protected against attacks from methanol that contains water.Type: GrantFiled: April 30, 2002Date of Patent: December 4, 2007Assignee: NKT Flexibles I/SInventors: Kristian Glejbøl, Jakob Wedel-Heinen
-
Publication number: 20070062633Abstract: For use in the manufacture of reinforcement layers for flexible pipes which are capable of absorbing compressive or tensile forces, and which are used for the transport of oil and gas, a thermoplastic material is applied to a strength-imparting layer. The strength-imparting layers are reeled on reels, and following unreeling they are laminated by application of heat and in direct continuation applied to the flexible pipe. The strength-imparting layer expediently consists of a polymer which is reinforced with at least 20% by volume of fibres. The thermoplastic material is of a reversible type, i.e. it may change from being relatively soft, but non-sticky by changes in temperature. The use of the method according to the invention allows manufacture of very strong reinforcements for flexible pipes which cannot be manufactured using a solid material, such as steel, since high performing bending forces are required in the shaping.Type: ApplicationFiled: October 10, 2006Publication date: March 22, 2007Applicant: NKT Research & Annovation A/SInventors: Kristian Glejbol, Jakob Wedel-Heinen
-
Patent number: 7069955Abstract: An armoured flexible pipe consists of an inner liner (3), which surrounds a carcass (1, 2). On the other side of the inner liner (3) there are two armour layers, where the innermost (5, 6) is a pressure armour layer, while the outermost (7, 8) is a tensile armour layer. An outer sheath (9) is finally applied around the armour layers. With the object of ensuring a low transport of heat through the walls of the pipe, one or more thermally-insulating layers (10) are extruded on the outside of the inner liner, where, depending on the use of the pipe, the layers can consist, for example, of a polymer or polymeric mixture, polyolefin, such as a polypropylene, or a polyketon. The flexible pipe according to the invention is especially applicable for use in the extraction, transport or refining of mineral oil or related fluids.Type: GrantFiled: January 11, 2001Date of Patent: July 4, 2006Assignee: NKT Flexibles I/SInventors: Kristian Glejbol, Jakob Wedel-Heinen
-
Publication number: 20060048833Abstract: An armoured flexible pipe consists of an inner liner (3), which surrounds a carcass (1, 2). On the other side of the inner liner (3) there are two armour layers, where the innermost (5, 6) is a pressure armour layer, while the outermost (7, 8) is a tensile armour layer. An outer sheath (9) is finally applied around the armour layers. With the object of ensuring a low transport of heat through the walls of the pipe, one or more thermally-insulating layers (10) are extruded on the outside of the inner liner, where, depending on the use of the pipe, the layers can consist, for example, of a polymer or polymeric mixture, polyolefin, such as a polypropylene, or a polyketon. The flexible pipe according to the invention is especially applicable for use in the extraction, transport or refining of mineral oil or related fluids.Type: ApplicationFiled: January 11, 2001Publication date: March 9, 2006Inventors: Kristian Glejbol, Jakob Wedel-Heinen
-
Patent number: 6889718Abstract: Flexible, armored pipes and methods of using the same are disclosed. In an exemplary embodiment, the flexible, armored pipe includes an inner liner which is surrounded by a pressure armor. The inner liner may be built-up by joining together profiles that have a number of recesses. In one embodiment, the profiles are configured as K-profiles, which have recesses that are arranged in adjoining surfaces of the profile. When the profiles are brought together, the recesses form a cavity in which a locking element can be inserted, the function of which is to prevent displacement of the K-profiles at right-angles to the axial direction of the pipe when exposed to axial, compressive forces. The locking element can be I-shaped, circular or configured as a wire with a C-shaped cross-section. The locking element can also be made either of a rigid or an elastic, deformable material. With a C-shaped locking element, the whole of the cavity, which is formed by the recesses, is not filled out.Type: GrantFiled: February 25, 2004Date of Patent: May 10, 2005Assignee: NKT Flexibles I/SInventors: Kristian Glejbøl, Jakob Wedel-Heinen, Jan Christian Rytter
-
Publication number: 20040194838Abstract: A reinforced flexible pipeline (1), which has an inner liner (3) whose inner side engages an inner reinforcement layer (2) that may be formed by a so-called carcass, and on whose outer side at least a strength-imparting reinforcement layer (4, 5, 6, 7) is provided, has an additional barrier layer (9, 10, 11) which is arranged between the inner liner and the inner reinforcement layer. The additional barrier layer is thermally insulating and/or chemically protecting. The additional barrier layer may be formed as a tape (9) which is wound around the inner reinforcement layer, or may be composed of locking profiles (10, 11) which are wound around the flexible pipeline in a helix. The additional barrier layer (9, 10, 11) may be made completely or partly of a polymer which may be thermoplastic, or is cross-linked completely or partly. Hereby, the pipe may be protected against temperatures above e.g. 13° C. and may also be protected against attacks from methanol that contains water.Type: ApplicationFiled: May 13, 2004Publication date: October 7, 2004Inventors: Kristian Glejbol, Jakob Wedel-Heinen
-
Publication number: 20040185202Abstract: For use in the manufacture of reinforcement layers for flexible pipes which are capable of absorbing compressive or tensile forces, and which are used for the transport of oil and gas, a thermoplastic material is applied to a strength-imparting layer. The strength-imparting layers are reeled on reels, and following unreeling they are laminated by application of heat and in direct continuation applied to the flexible pipe. The strength-imparting layer expediently consists of a polymer which is reinforced with at least 20% by volume of fibres. The thermoplastic material is of a reversible type, i.e. it may change from being relatively soft, but non-sticky by changes in temperature. The use of the method according to the invention allows manufacture of very strong reinforcements for flexible pipes which cannot be manufactured using a solid material, such as steel, since high preforming bending forces are required in the shaping.Type: ApplicationFiled: April 19, 2004Publication date: September 23, 2004Inventors: Kristian Glejbol, Jakob Wedel-Heinen
-
Publication number: 20040182462Abstract: A flexible armoured pipe, which comprises an inner liner, which is surrounded by a pressure armour, is built up by the joining together of profiles, which have a number of recesses. According to the invention, the profiles are configured as K-profiles (10, 16, 17), which have recesses (10a, 10b, 10c, 10d), which are arranged in adjoining surfaces of the profile. When the profiles are brought together, the recesses form a cavity in which a locking element (12, 14, 18) can be inserted, the function of which is to prevent displacement of the K-profiles at right-angles to the axial direction of the pipe when this is exposed to axial, compressive forces. The locking element can be I-shaped (14), be circular or be configured as a wire (18) with a C-shaped cross-section. The locking element can also be made either of a rigid or an elastic, deformable material. With a C-shaped locking element, the whole of the cavity, which is formed by the recesses, is not filled out.Type: ApplicationFiled: February 25, 2004Publication date: September 23, 2004Applicant: NKT FLEXIBLES I/SInventors: Kristian Glejbol, Jakob Wedel-Heinen, Jan Christian Rytter
-
Patent number: 6739355Abstract: Flexible, armored pipes and methods of using the same are disclosed. In an exemplary embodiment, the flexible, armored pipe includes an inner liner which is surrounded by a pressure armor. The inner liner may be built-up by joining together profiles that have a number of recesses. In one embodiment, the profiles are configured as K-profiles, which have recesses that are arranged in adjoining surfaces of the profile. When the profiles are brought together, the recesses form a cavity in which a locking element can be inserted, the function of which is to prevent displacement of the K-profiles at right-angles to the axial direction of the pipe when exposed to axial, compressive forces. The locking element can be I-shaped, circular or configured as a wire with a C-shaped cross-section. The locking element can also be made either of a rigid or an elastic, deformable material. With a C-shaped locking element, the whole of the cavity, which is formed by the recesses, is not filled out.Type: GrantFiled: February 25, 2003Date of Patent: May 25, 2004Assignee: NKT Flexibles I/SInventors: Kristian Glejbøl, Jakob Wedel-Heinen, Jan Christian Rytter
-
Patent number: 6668866Abstract: An armoured flexible pipe consists of an inner liner (3), on the inside of which a carcass (1) is provided, while the outer side of the inner liner is surrounded by a layer of pressure armour and a layer of tensile armour, which in turn are surrounded by one or more layers of thermally insulating bands which are shielded from the surroundings by an outer sheath. With the object of ensuring a sufficiently low transport of heat through the walls of the pipe, on the outside of the pressure and tensile armour layers (5, 6, 7, 8) thermally insulating bands are provided, which bands are made of a polymer or a polymeric composition, such as a polymer containing at least 50% polypropylene. The armoured flexible pipe according to the invention is especially advantageous for use in the extraction, transport or refining of mineral oil or related fluids.Type: GrantFiled: November 13, 2002Date of Patent: December 30, 2003Assignee: NKT Flexibles I/SInventors: Kristian Glejbol, Jakob Wedel-Heinen
-
Publication number: 20030164196Abstract: A flexible armored pipe, which comprises an inner liner, which is surrounded by a pressure armor, is built up by the joining together of profiles, which have a number of recesses. According to the invention, the profiles are configured as K-profiles (10, 16, 17), which have recesses (10a, 10b, 10c, 10d), which are arranged in adjoining surfaces of the profile. When the profiles are brought together, the recesses form a cavity in which a locking element (12, 14, 18) can be inserted, the function of which is to prevent displacement of the K-profiles at right-angles to the axial direction of the pipe when this is exposed to axial, compressive forces. The locking element can be I-shaped (14), be circular or be configured as a wire (18) with a C-shaped cross-section. The locking element can also be made either of a rigid or an elastic, deformable material. With a C-shaped locking element, the whole of the cavity, which is formed by the recesses, is not filled out.Type: ApplicationFiled: February 25, 2003Publication date: September 4, 2003Inventors: Kristian Glejbol, Jakob Wedel-Heinen, Jan Christian Rytter
-
Publication number: 20030155029Abstract: An armoured flexible pipe consists of an inner liner (3), on the inside of which a carcass (1) is provided, while the outer side of the inner liner is surrounded by a layer of pressure armour and a layer of tensile armour, which in turn are surrounded by one or more layers of thermally insulating bands which are shielded from the surroundings by an outer sheath. With the object of ensuring a sufficiently low transport of heat through the walls of the pipe, on the outside of the pressure and tensile armour layers (5, 6, 7, 8) thermally insulating bands are provided, which bands are made of a polymer or a polymeric composition, such as a polymer containing at least 50% polypropylene. The armoured flexible pipe according to the invention is especially advantageous for use in the extraction, transport or refining of mineral oil or related fluids.Type: ApplicationFiled: November 13, 2002Publication date: August 21, 2003Inventors: Kristian Glejbol, Jakob Wedel-Heinen