Patents by Inventor Jakub Tadeusz Kedzierski

Jakub Tadeusz Kedzierski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7659153
    Abstract: A field effect device is disclosed which has a body formed of a crystalline semiconductor material and has at least one vertically oriented section and at least one horizontally oriented section. The device is produced in SOI technology by fabricating first a formation of the device in masking insulators, and then transferring this formation through several etching steps into the SOI layer. The segmented field effect device combines FinFET, or fully depleted silicon-on-insulator FETs, type devices with fully depleted planar devices. This combination allows device width control with FinFET type devices. The segmented field effect device gives high current drive for a given layout area. The segmented field effect devices allow for the fabrication of high performance processors.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ying Zhang, Bruce B. Doris, Thomas Safron Kanarsky, Meikei Ieong, Jakub Tadeusz Kedzierski
  • Publication number: 20080254577
    Abstract: A field effect device is disclosed which has a body formed of a crystalline semiconductor material and has at least one vertically oriented section and at least one horizontally oriented section. The device is produced in SOI technology by fabricating first a formation of the device in masking insulators, and then transferring this formation through several etching steps into the SOI layer. The segmented field effect device combines FinFET, or fully depleted silicon-on-insulator FETs, type devices with fully depleted planar devices. This combination allows device width control with FinFET type devices. The segmented field effect device gives high current drive for a given layout area. The segmented field effect devices allow for the fabrication of high performance processors.
    Type: Application
    Filed: June 20, 2008
    Publication date: October 16, 2008
    Applicant: International Business Machines Corporation
    Inventors: Ying Zhang, Bruce B. Doris, Thomas Safron Kanarsky, Meikei Ieong, Jakub Tadeusz Kedzierski
  • Patent number: 7413941
    Abstract: A field effect device is disclosed which has a body formed of a crystalline semiconductor material and has at least one vertically oriented section and at least one horizontally oriented section. The device is produced in SOI technology by fabricating first a formation of the device in masking insulators, and then transferring this formation through several etching steps into the SOI layer. The segmented field effect device combines FinFET, or fully depleted silicon-on-insulator FETs, type devices with fully depleted planar devices. This combination allows device width control with FinFET type devices. The segmented field effect device gives high current drive for a given layout area. The segmented field effect devices allow for the fabrication of high performance processors.
    Type: Grant
    Filed: May 13, 2006
    Date of Patent: August 19, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ying Zhang, Bruce B. Doris, Thomas Safron Kanarsky, Meikei Ieong, Jakub Tadeusz Kedzierski
  • Patent number: 7388258
    Abstract: A field effect device is disclosed which has a body formed of a crystalline semiconductor material and has at least one vertically oriented section and at least one horizontally oriented section. The device is produced in SOI technology by fabricating first a formation of the device in masking insulators, and then transferring this formation through several etching steps into the SOI layer. The segmented field effect device combines FinFET, or fully depleted silicon-on-insulator FETs, type devices with fully depleted planar devices. This combination allows device width control with FinFET type devices. The segmented field effect device gives high current drive for a given layout area. The segmented field effect devices allow for the fabrication of high performance processors.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: June 17, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ying Zhang, Bruce B. Doris, Thomas Safron Kanarsky, Meikei Ieong, Jakub Tadeusz Kedzierski
  • Patent number: 6846734
    Abstract: Methods of forming complementary metal oxide semiconductor (CMOS) devices having multiple-threshold voltages which are easily tunable are provided. Total salicidation with a metal bilayer (representative of the first method of the present invention) or metal alloy (representative of the second method of the present invention) is provided. CMOS devices having multiple-threshold voltages provided by the present methods are also described.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: January 25, 2005
    Assignee: International Business Machines Corporation
    Inventors: Ricky Amos, Katayun Barmak, Diane C. Boyd, Cyril Cabral, Jr., Meikei Leong, Thomas S. Kanarsky, Jakub Tadeusz Kedzierski
  • Publication number: 20040094804
    Abstract: Methods of forming complementary metal oxide semiconductor (CMOS) devices having multiple-threshold voltages which are easily tunable are provided. Total salicidation with a metal bilayer (representative of the first method of the present invention) or metal alloy (representative of the second method of the present invention) is provided. CMOS devices having multiple-threshold voltages provided by the present methods are also described.
    Type: Application
    Filed: November 20, 2002
    Publication date: May 20, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ricky Amos, Katayun Barmak, Diane C. Boyd, Cyril Cabral, Meikei Leong, Thomas S. Kanarsky, Jakub Tadeusz Kedzierski
  • Patent number: 6413802
    Abstract: A FinFET device is fabricated using conventional planar MOSFET technology. The device is fabricated in a silicon layer overlying an insulating layer (e.g., SIMOX) with the device extending from the insulating layer as a fin. Double gates are provided over the sides of the channel to provide enhanced drive current and effectively suppress short channel effects. A plurality of channels can be provided between a source and a drain for increased current capacity. In one embodiment two transistors can be stacked in a fin to provide a CMOS transistor pair having a shared gate.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: July 2, 2002
    Assignee: The Regents of the University of California
    Inventors: Chenming Hu, Tsu-Jae King, Vivek Subramanian, Leland Chang, Xuejue Huang, Yang-Kyu Choi, Jakub Tadeusz Kedzierski, Nick Lindert, Jeffrey Bokor, Wen-Chin Lee