Patents by Inventor Jallepally Ravi

Jallepally Ravi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955381
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A temperature of a pedestal comprising a cooling feature on which a substrate is located is set to less than or equal to 100° C. The substrate is exposed to a plasma treatment to remove chemical residual and/or impurities from features of the substrate including a metal bottom, dielectric sidewalls, and/or a field of dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The plasma treatment may be an oxygen plasma, for example, a direct oxygen plasma. Processing tools and computer readable media for practicing the method are also described.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Kazuya Daito, Geraldine M. Vasquez, Da He, Jallepally Ravi, Yu Lei, Dien-Yeh Wu
  • Patent number: 11955319
    Abstract: Provided is a processing chamber configured to contain a semiconductor substrate in a processing region of the chamber. The processing chamber includes a remote plasma unit and a direct plasma unit, wherein one of the remote plasma unit or the direct plasma unit generates a remote plasma and the other of the remote plasma unit or the direct plasma unit generates a direct plasma. The combination of a remote plasma unit and a direct plasma unit is used to remove, etch, clean, or treat residue on a substrate from previous processing and/or from native oxide formation. The combination of a remote plasma unit and direct plasma unit is used to deposit thin films on a substrate.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kazuya Daito, Yi Xu, Yu Lei, Takashi Kuratomi, Jallepally Ravi, Pingyan Lei, Dien-Yeh Wu
  • Patent number: 11939668
    Abstract: A method of forming a tungsten-containing layer over a substrate includes a) positioning a substrate on a substrate support in a process volume of a process chamber; b) providing a precursor gas to the process volume of the process chamber for a first duration; and c) providing a tungsten-containing gas to the process volume of the process chamber by opening a pulsing valve on a tungsten-containing gas delivery line for a second duration occurring after the first duration to form a tungsten-containing layer on the substrate. The tungsten-containing gas delivery line includes a first section connected to an inlet of the pulsing valve and a second section connected to an outlet of the pulsing valve, the first section connects the inlet of the pulsing valve to a reservoir of tungsten-containing gas, the second section connects the outlet of the pulsing valve to an inlet of the process chamber.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: March 26, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Zubin Huang, Mohammed Jaheer Sherfudeen, David Matthew Santi, Jallepally Ravi, Peiqi Wang, Kai Wu
  • Publication number: 20240087955
    Abstract: A method and apparatus for forming tungsten features in semiconductor devices is provided. The method includes exposing a top opening of a feature formed in a substrate to a physical vapor deposition (PVD) process to deposit a tungsten liner layer within the feature. The PVD process is performed in a first processing region of a first processing chamber and the tungsten liner layer forms an overhang portion, which partially obstructs the top opening of the feature. The substrate is transferred from the first processing region of the first processing chamber to a second processing region of a second processing chamber without breaking vacuum. The overhang portion is exposed to nitrogen-containing radicals in the second processing region to inhibit subsequent growth of tungsten along the overhang portion. The feature is exposed to a tungsten-containing precursor gas to form a tungsten fill layer over the tungsten liner layer within the feature.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 14, 2024
    Inventors: Yi XU, Xianyuan ZHAO, Zhimin QI, Aixi ZHANG, Geraldine VASQUEZ, Dien-Yeh WU, Wei LEI, Xingyao GAO, Shirish PETHE, Wenting HOU, Chao DU, Tsung-Han YANG, Kyoung-Ho BU, Chen-Han LIN, Jallepally RAVI, Yu LEI, Rongjun WANG, Xianmin TANG
  • Publication number: 20240018648
    Abstract: Embodiments of a purge ring for use in a process chamber are provided herein. In some embodiments, a purge ring includes: an annular body having an inner portion and an outer portion, wherein the inner portion includes an inner surface of the annular body, the inner surface comprising a first inner sidewall, a second inner sidewall, and a third inner sidewall, wherein the inner portion has an upper inner notch that defines the first inner sidewall and a lower inner notch that defines the second inner sidewall, wherein a third inner sidewall is disposed between the first inner sidewall and the second inner sidewall, and wherein the first inner sidewall and the second inner sidewall are disposed radially outward of the third inner sidewall.
    Type: Application
    Filed: July 11, 2023
    Publication date: January 18, 2024
    Inventors: Geraldine VASQUEZ, Yi XU, Dien-yeh WU, Aixi ZHANG, Jallepally RAVI, Yu LEI
  • Publication number: 20230374660
    Abstract: A substrate processing system is provided having a processing chamber. The processing chamber includes a lid plate, one or more chamber sidewalls, and a chamber base that collectively define a processing volume. An annular plate is coupled to the lid plate, and an edge manifold is fluidly coupled to the processing chamber through the annular plate and the lid plate. The substrate processing system includes a center manifold that is coupled to the lid plate.
    Type: Application
    Filed: May 17, 2022
    Publication date: November 23, 2023
    Inventors: Harpreet SINGH, Jallepally RAVI, Zubin HUANG, Manjunatha KOPPA, Sandesh YADAMANE, Srinivas TOKUR MOHANA, Shreyas PATIL SHANTHAVEERASWAMY, Kai WU, Peiqi WANG, Mingrui ZHAO
  • Publication number: 20230357929
    Abstract: A shadow ring for a processing chamber, such as a semiconductor processing chamber, is an annular member including a body with a radially inwardly projecting lip. The shadow ring includes a feature that mitigates heat transfer between the lip and the rest of the body. In one example, the feature includes a plurality of apertures, each aperture extending from an upper opening at an upper surface of the shadow ring to a corresponding lower opening at a lower surface of the shadow ring. A neck between adjacent apertures creates a bottleneck that hinders conductive heat transfer.
    Type: Application
    Filed: July 11, 2022
    Publication date: November 9, 2023
    Inventors: Zubin HUANG, Jallepally RAVI, Cheng CHENG, Peiqi WANG, Kai WU
  • Publication number: 20230340662
    Abstract: A method of forming a tungsten-containing layer over a substrate includes a) positioning a substrate on a substrate support in a process volume of a process chamber; b) providing a precursor gas to the process volume of the process chamber for a first duration; and c) providing a tungsten-containing gas to the process volume of the process chamber by opening a pulsing valve on a tungsten-containing gas delivery line for a second duration occurring after the first duration to form a tungsten-containing layer on the substrate. The tungsten-containing gas delivery line includes a first section connected to an inlet of the pulsing valve and a second section connected to an outlet of the pulsing valve, the first section connects the inlet of the pulsing valve to a reservoir of tungsten-containing gas, the second section connects the outlet of the pulsing valve to an inlet of the process chamber.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 26, 2023
    Inventors: Zubin HUANG, Mohammed Jaheer SHERFUDEEN, David Matthew SANTI, Jallepally Ravi, Peiqi WANG, Kai WU
  • Patent number: 11721542
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A substrate comprising a surface structure with a metal bottom, dielectric sidewalls, and a field of dielectric is exposed to a dual plasma treatment in a processing chamber to remove chemical residual and/or impurities from the metal bottom, the dielectric sidewalls, and/or the field of the dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The dual plasma treatment comprises a direct plasma and a remote plasma.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: August 8, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Kazuya Daito, Yu Lei, Dien-Yeh Wu, Jallepally Ravi
  • Publication number: 20230130756
    Abstract: Embodiments of the disclosure provided herein generally relate to a bottom cover plate (BCP) that enables control of radiation loss from a heating element inside a chamber for processing a substrate. The heating element is used to heat the substrate before or during processing and may heat the substrate unevenly due to uneven heat losses within the chamber. For example, the uneven heating of the substrate may result in uneven deposition of a material on the substrate, which may result in excess processing to correct the deposition or wasted product from disposing of improperly processed substrates. The BCP may be used to correct the uneven heating of the substrate.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 27, 2023
    Inventors: Zubin HUANG, Srinivas Tokur MOHANA, Sandesh YADAMANE, Kai WU, Jallepally RAVI, Xiaozhou YU, Peiqi WANG
  • Patent number: 11555244
    Abstract: Embodiments of showerheads are provided herein. In some embodiments, a showerhead for use in a process chamber includes a gas distribution plate having an upper surface and a lower surface; a plurality of channels extending through the gas distribution plate substantially perpendicular to the lower surface; a plurality of first gas delivery holes extending from the upper surface to the lower surface between adjacent channels of the plurality of channels to deliver a first process gas through the gas distribution plate; and a plurality of second gas delivery holes extending from the plurality of channels to the lower surface to deliver a second process gas therethrough without mixing with the first process gas.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 17, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Pingyan Lei, Dien-Yeh Wu, Jallepally Ravi, Takashi Kuratomi, Xiaoxiong Yuan, Manjunatha Koppa, Vinod Konda Purathe
  • Publication number: 20230002894
    Abstract: A method and apparatus for processing a substrate are described herein. The methods and apparatus described enable the raising and lowering of a shadow ring within a process chamber either simultaneously with or separately from a plurality of substrate lift pins. The shadow ring is raised and lowered using a shadow ring lift assembly and may be raised to a pre-determined height above the substrate during a radical treatment operation. The shadow ring lift assembly may also raise and lower the plurality of substrate lift pins to enable both the shadow ring and the substrate lift pins to be raised to a transfer position when the substrate is being transferred into or out of the process chamber.
    Type: Application
    Filed: September 13, 2021
    Publication date: January 5, 2023
    Inventors: Zubin HUANG, Jallepally Ravi, Kai WU, Xiaoxiong YUAN
  • Publication number: 20220319813
    Abstract: Provided is a processing chamber configured to contain a semiconductor substrate in a processing region of the chamber. The processing chamber includes a remote plasma unit and a direct plasma unit, wherein one of the remote plasma unit or the direct plasma unit generates a remote plasma and the other of the remote plasma unit or the direct plasma unit generates a direct plasma. The combination of a remote plasma unit and a direct plasma unit is used to remove, etch, clean, or treat residue on a substrate from previous processing and/or from native oxide formation. The combination of a remote plasma unit and direct plasma unit is used to deposit thin films on a substrate.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Kazuya Daito, Yi Xu, Yu Lei, Takashi Kuratomi, Jallepally Ravi, Pingyan Lei, Dien-Yeh Wu
  • Publication number: 20220319837
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A substrate comprising a surface structure with a metal bottom, dielectric sidewalls, and a field of dielectric is exposed to a dual plasma treatment in a processing chamber to remove chemical residual and/or impurities from the metal bottom, the dielectric sidewalls, and/or the field of the dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The dual plasma treatment comprises a direct plasma and a remote plasma.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Kazuya Daito, Yu Lei, Dien-Yeh Wu, Jallepally Ravi
  • Publication number: 20220099426
    Abstract: Methods and apparatus for substrate position calibration for substrate supports in substrate processing systems are provided herein. In some embodiments, a method for positioning a substrate on a substrate support includes: obtaining a plurality of backside pressure values corresponding to a plurality of different substrate positions on a substrate support by repeatedly placing a substrate in a position on the substrate support, and vacuum chucking the substrate to the substrate support and measuring a backside pressure; and analyzing the plurality of backside pressure values to determine a calibrated substrate position.
    Type: Application
    Filed: November 19, 2021
    Publication date: March 31, 2022
    Inventors: Tomoharu MATSUSHITA, Aravind KAMATH, Jallepally RAVI, Cheng-Hsiung TSAI, Hiroyuki TAKAHAMA
  • Publication number: 20210398850
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A temperature of a pedestal comprising a cooling feature on which a substrate is located is set to less than or equal to 100° C. The substrate is exposed to a plasma treatment to remove chemical residual and/or impurities from features of the substrate including a metal bottom, dielectric sidewalls, and/or a field of dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The plasma treatment may be an oxygen plasma, for example, a direct oxygen plasma. Processing tools and computer readable media for practicing the method are also described.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Kazuya Daito, Geraldine M. Vasquez, Da He, Jallepally Ravi, Yu Lei, Dien-Yeh Wu
  • Patent number: 11201078
    Abstract: Methods and apparatus for substrate position calibration for substrate supports in substrate processing systems are provided herein. In some embodiments, a method for positioning a substrate on a substrate support includes: obtaining a plurality of backside pressure values corresponding to a plurality of different substrate positions on a substrate support by repeatedly placing a substrate in a position on the substrate support, and vacuum chucking the substrate to the substrate support and measuring a backside pressure; and analyzing the plurality of backside pressure values to determine a calibrated substrate position.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 14, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tomoharu Matsushita, Aravind Kamath, Jallepally Ravi, Cheng-Hsiung Tsai, Hiroyuki Takahama
  • Patent number: D997893
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: September 5, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Zubin Huang, Srinivas Tokur Mohana, Shreyas Patil Shanthaveeraswamy, Sandesh Yadamane, Jallepally Ravi, Harpreet Singh, Manjunatha Koppa
  • Patent number: D997894
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: September 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zubin Huang, Srinivas Tokur Mohana, Shreyas Patil Shanthaveeraswamy, Sandesh Yadamane, Jallepally Ravi, Harpreet Singh, Manjunatha Koppa
  • Patent number: D1009817
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Zubin Huang, Srinivas Tokur Mohana, Shreyas Patil Shanthaveeraswamy, Sandesh Yadamane, Jallepally Ravi, Harpreet Singh, Manjunatha Koppa