Patents by Inventor Jamal S. Izadian

Jamal S. Izadian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9142872
    Abstract: Example three-dimensional signal interconnections for electromagnetic waves and methods for fabricating the interconnections are described. An example apparatus may include a first conducting layer including a plurality of through-holes, and a first layer between the first conducting layer and a second conducting layer. The first layer may include a plurality of through-holes, and the second conducting layer may also include a plurality of through-holes. The plurality of through-holes of the first layer may at least partially be aligned with the plurality of through-holes of the first conducting layer and the plurality through-holes of the second conducting layer. The apparatus may further include a second layer between the second conducting layer and a third conducting layer. The second layer may have a first waveguide channel and a second waveguide channel substantially perpendicular to and intersecting with the first waveguide channel.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: September 22, 2015
    Assignee: Google Inc.
    Inventor: Jamal S. Izadian
  • Patent number: 9130254
    Abstract: Three-dimensional electromagnetic signal interconnect systems and methods for fabricating the interconnect systems are described. An example apparatus may comprise a first layer including a first dielectric layer coupled to one or more of a first and second conducting layer. The first layer may also include at least one hole. The apparatus may also comprise a second layer including at least one through-hole and a second dielectric layer coupled between a third and fourth conducting layer. The apparatus may further comprise a third layer including at least one hole and a third dielectric layer coupled to one or more of a fifth and sixth conducting layer. The at least one hole/through-hole of each layer may be aligned at least in part with the at least one hole/through-hole of each other layer, and may include metal plating coupled to an inner surface of the respective at least one hole/through-hole.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: September 8, 2015
    Assignee: Google Inc.
    Inventor: Jamal S. Izadian
  • Patent number: 9123979
    Abstract: Example multi-layer apparatus for electromagnetic waves and methods for fabricating such apparatus are described. An example apparatus may include a first conducting layer including an input port and a second conducting layer including at least one through-hole. The apparatus may also include a first layer between the first conducting layer and the second conducting layer, including a first waveguide aligned at least in part with the input port and the at least one through-hole. The apparatus may also include a third conducting layer including an output port. The apparatus may also include a second layer between the second conducting layer and the third conducting layer, including a second waveguide aligned at least in part with the output port and the at least one through-hole. The at least one through-hole may be configured to couple millimeter electromagnetic waves from the first waveguide to the second waveguide.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: September 1, 2015
    Assignee: Google Inc.
    Inventor: Jamal S. Izadian
  • Publication number: 20120306598
    Abstract: We introduce a new Periodic micro coaxial transmission line (PMTL) that is capable of sustaining a TEM propagation mode up to THz band. The PMTL can be manufactured using current photolithographic processes. This transmission line can be embedded in microscopic layers that allow many new applications. We further use the embedded PMTL to develop a modular, scaleable and fully automated Universal Test Fixture for testing chips in various stages of development mainly for digital IC chips that can be utilized in production lines with pick and place of chips on tape to test every chip before insertion into circuits. The PMTL can also provide Confined Field Interconnects between various elements on semiconductor wafers to reduce parasitic and radiation losses and practically eliminating cross talk, thus, increasing the speed of digital IC's. The PMTL is also used to develop a Universal Test Socket, and a Hand Probe.
    Type: Application
    Filed: May 22, 2012
    Publication date: December 6, 2012
    Applicant: GOOGLE INC
    Inventor: Jamal S. Izadian
  • Patent number: 8212580
    Abstract: We introduce a new Periodic micro coaxial transmission line (PMTL) that is capable of sustaining a TEM propagation mode up to THz band. The PMTL can be manufactured using current photolithographic processes. This transmission line can be embedded in microscopic layers that allow many new applications. We further use the embedded PMTL to develop a modular, scaleable and fully automated Universal Test Fixture for testing chips in various stages of development mainly for digital IC chips that can be utilized in production lines with pick and place of chips on tape to test every chip before insertion into circuits. The PMTL can also provide Confined Field Interconnects between various elements on semiconductor wafers to reduce parasitic and radiation losses and practically eliminating cross talk, thus, increasing the speed of digital IC's. The PMTL is also used to develop a Universal Test Socket, and a Hand Probe.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: July 3, 2012
    Assignee: Google Inc.
    Inventor: Jamal S. Izadian
  • Publication number: 20100307798
    Abstract: Traditional High Speed Electronic Systems Interconnect experience several bandwidth bottlenecks along the multiplicity of signal paths that limits the information throughput. Here we build upon the cellular interconnect concept of PMTL, the Periodic Micro Transmission Line which was introduced in an earlier patent application, and provide a new type of transmission line VMPL, as the Vertical Micro Transmission Line approach to make all the elements of a high speed interconnect wideband, unified, scalable, and practical for high volume manufacturing. This provides total connectivity improvements from end-to-end of electronic systems that demands higher bandwidth, and increased information throughput, thermal management, and impeccable signal integrity. The technologies introduced here provide solutions for any level of the fan out from chips to systems, in CMOS, or Packages, and PCB's.
    Type: Application
    Filed: June 3, 2009
    Publication date: December 9, 2010
    Inventor: Jamal S. Izadian
  • Publication number: 20080265919
    Abstract: We introduce a new Periodic micro coaxial transmission line (PMTL) that is capable of sustaining a TEM propagation mode up to THz band. The PMTL can be manufactured using the current photolithographic processes. This transmission line can be embedded in microscopic layers that allow many new applications. We use the PMTL to develop a wideband highly scalable connector that is then used in a Probe that can be used for connecting to microscopic scale Integrated Circuits with picoseconds High Speed Digital and near THz Analogue performance in various stages of development from R&D to production testing. These probes, in one embodiment, provide a thin pen-like vertical probe tip that matches the die pad pattern precisely that can be as agile as a high speed plotter pen, connecting on the fly to any die pattern on a wafer.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 30, 2008
    Inventor: Jamal S. Izadian
  • Patent number: 7034464
    Abstract: A device that converts non-visible electromagnetic energy into light. The device includes a cylindrical electromagnetic resonator with a central through hole, a dielectric (preferably ceramic) material surrounded by symmetrically displaced through holes surrounding the central through hole. The device also includes a base and probes connected to the base. The probes are placed to introduce non-visible electromagnetic energy into the resonator. The device also includes a plasma lamp placed in the central through hole. The plasma lamp is placed to convert the non-visible electromagnetic energy into light. Preferably, the resonator is composed of a ceramic with a metalized surface except for inside the through holes.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: April 25, 2006
    Assignee: Sigma Designs, Inc.
    Inventors: Jamal S. Izadian, Larry DeClue, David Fealkoff