Patents by Inventor James A. Davidson

James A. Davidson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11707280
    Abstract: Devices and methods for deploying self-cinching surgical clips. A device can access at least two layers of tissue or material from only one side of the tissue or material and puncture through the two layers of tissue or material. The various configurations of clips disclosed herein can be made of a superelastic material such as Nitinol, and have a constrained and a relaxed state, and no sharp edges or tips so as to reduce tissue irritation following deployment. The clip can be disposed within the housing of the delivery device and held in a constrained state until deployment wherein the clip assumes its relaxed state, where the ends of the clip can be brought into close approximation, thereby securing the layers of tissue or material together.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: July 25, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Brian S. Conklin, James A. Davidson, Ralph Schneider
  • Publication number: 20230181316
    Abstract: Disclosed prosthetic valves can comprise a sewing ring configured to secure the valve to an implantation site. Some disclosed valves comprise a resiliently collapsible frame having a neutral configuration and a collapsed deployment configuration. Some disclosed frames can self-expand to the neutral configuration when released from the collapsed deployment configuration. Collapsing a disclosed valve can provide convenient access to the sewing ring, such as for securing the valve to the implantation site, as well as for the insertion of the valve through relatively small surgical incisions.
    Type: Application
    Filed: February 3, 2023
    Publication date: June 15, 2023
    Inventors: Hengchu Cao, Brian S. Conklin, Paul A. Schmidt, Grace Myong Kim, James A. Davidson, Hoa Trinh Tran, Kristy Luong Tam
  • Patent number: 11622861
    Abstract: Compressible heart valve annulus sizing templates suitable for minimally-invasive or otherwise reduced accessibility surgeries. The sizing templates may be folded, rolled, or otherwise compressed into a reduced configuration for passage through an access tube or other such access channel. Once expelled from the access tube the sizing templates expand to their original shape for use in sizing the annulus. The templates may be formed of an elastomeric polymer material such as silicone, a highly elastic metal such as NITINOL, or both. Grasping tabs or connectors for handles permit manipulation from outside the body. A NITINOL wireform may be compressed for passage through an access tube and expelled from the distal end thereof into a cloth cover to assume a sizer shape.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 11, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Matthew T. Winston, Da-Yu Chang, Louis A. Campbell, James A. Davidson
  • Patent number: 11571299
    Abstract: Disclosed prosthetic valves can comprise a sewing ring configured to secure the valve to an implantation site. Some disclosed valves comprise a resiliently collapsible frame having a neutral configuration and a collapsed deployment configuration. Some disclosed frames can self-expand to the neutral configuration when released from the collapsed deployment configuration. Collapsing a disclosed valve can provide convenient access to the sewing ring, such as for securing the valve to the implantation site, as well as for the insertion of the valve through relatively small surgical incisions.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: February 7, 2023
    Assignee: Edwards Lifesciences Corporation
    Inventors: Hengchu Cao, Brian S. Conklin, Paul A. Schmidt, Grace Myong Kim, James A. Davidson, Hoa Trinh Tran, Kristy Luong Tam
  • Publication number: 20220241462
    Abstract: A bioprosthetic tissue having a reduced propensity to calcify in vivo, the bioprosthetic tissue. The bioprosthetic tissue comprises an aldehyde cross-linked and stressed bioprosthetic tissue comprising exposed calcium, phosphate or immunogenic binding sites that have been reacted with a calcification mitigant. The bioprosthetic tissue has a reduced propensity to calcify in vivo as compared to aldehyde cross-linked bioprosthetic tissue that has not been stressed and reacted with the calcification mitigant.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 4, 2022
    Inventors: James A. Davidson, Jeffrey S. Dove, Darin P. Dobler
  • Publication number: 20220117738
    Abstract: Compressible heart valve annulus sizing templates suitable for minimally-invasive or otherwise reduced accessibility surgeries. The sizing templates may be folded, rolled, or otherwise compressed into a reduced configuration for passage through an access tube or other such access channel. Once expelled from the access tube the sizing templates expand to their original shape for use in sizing the annulus. The templates may be formed of an elastomeric polymer material such as silicone, a highly elastic metal such as NITINOL, or both. Grasping tabs or connectors for handles permit manipulation from outside the body. A NITINOL wireform may be compressed for passage through an access tube and expelled from the distal end thereof into a cloth cover to assume a sizer shape.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 21, 2022
    Inventors: Matthew T. Winston, Da-Yu Chang, Louis A. Campbell, James A. Davidson
  • Patent number: 11304712
    Abstract: A medical device, configured to perform an endovascular therapy, e.g., thrombectomy, can comprise an elongate manipulation member and an intervention member. The intervention member can comprise a proximal end portion and a mesh. The proximal end portion can be coupled with the distal end portion of the elongate manipulation member. The mesh can have a plurality of cells and, be compressible to a collapsed configuration for delivery to an endovascular treatment site through a catheter, and be self-expandable from the collapsed configuration to an expanded configuration. At least a portion of the mesh, from a first location to a second location along the mesh, can be configured such that an amount of cell deformation in response to longitudinally directed tensile forces decreases by less than 5% or increases in a distal direction along the portion of the mesh.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: April 19, 2022
    Assignee: COVIDIEN LP
    Inventor: James A. Davidson
  • Patent number: 11305036
    Abstract: A bioprosthetic tissue having a reduced propensity to calcify in vivo, the bioprosthetic tissue. The bioprosthetic tissue comprises an aldehyde cross-linked and stressed bioprosthetic tissue comprising exposed calcium, phosphate or immunogenic binding sites that have been reacted with a calcification mitigant. The bioprosthetic tissue has a reduced propensity to calcify in vivo as compared to aldehyde cross-linked bioprosthetic tissue that has not been stressed and reacted with the calcification mitigant.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: April 19, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: James A. Davidson, Jeffrey S. Dove, Darin P. Dobler
  • Patent number: 11213393
    Abstract: Compressible heart valve annulus sizing templates suitable for minimally-invasive or otherwise reduced accessibility surgeries. The sizing templates may be folded, rolled, or otherwise compressed into a reduced configuration for passage through an access tube or other such access channel. Once expelled from the access tube the sizing templates expand to their original shape for use in sizing the annulus. The templates may be formed of an elastomeric polymer material such as silicone, a highly elastic metal such as NITINOL, or both. Grasping tabs or connectors for handles permit manipulation from outside the body. A NITINOL wireform may be compressed for passage through an access tube and expelled from the distal end thereof into a cloth cover to assume a sizer shape.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: January 4, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Matthew T. Winston, Da-Yu Chang, Louis A. Campbell, James A. Davidson
  • Publication number: 20210369277
    Abstract: Devices and methods for deploying self-cinching surgical clips. A device can access at least two layers of tissue or material from only one side of the tissue or material and puncture through the two layers of tissue or material. The various configurations of clips disclosed herein can be made of a superelastic material such as Nitinol, and have a constrained and a relaxed state, and no sharp edges or tips so as to reduce tissue irritation following deployment. The clip can be disposed within the housing of the delivery device and held in a constrained state until deployment wherein the clip assumes its relaxed state, where the ends of the clip can be brought into close approximation, thereby securing the layers of tissue or material together.
    Type: Application
    Filed: August 17, 2021
    Publication date: December 2, 2021
    Inventors: Brian S. Conklin, James A. Davidson, Ralph Schneider
  • Patent number: 11090053
    Abstract: Devices and methods for deploying self-cinching surgical clips. A device can access at least two layers of tissue or material from only one side of the tissue or material and puncture through the two layers of tissue or material. The various configurations of clips disclosed herein can be made of a superelastic material such as Nitinol, and have a constrained and a relaxed state, and no sharp edges or tips so as to reduce tissue irritation following deployment. The clip can be disposed within the housing of the delivery device and held in a constrained state until deployment wherein the clip assumes its relaxed state, where the ends of the clip can be brought into close approximation, thereby securing the layers of tissue or material together.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: August 17, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Brian S. Conklin, James A. Davidson, Ralph Schneider
  • Patent number: 10966822
    Abstract: A method for manufacturing a heart valve using bioprosthetic tissue that exhibits reduced in vivo calcification. The method includes applying a calcification mitigant such as a capping agent or an antioxidant to the tissue to specifically inhibit oxidation in tissue. Also, the method can be used to inhibit oxidation in dehydrated tissue. The capping agent suppresses the formation of binding sites in the tissue that are exposed or generated by the oxidation and otherwise would, upon implant, attract calcium, phosphate, immunogenic factors, or other precursors to calcification. In one method, tissue leaflets in assembled bioprosthetic heart valves are pretreated with an aldehyde capping agent prior to dehydration and sterilization.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: April 6, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Jeffrey S. Dove, Darin P. Dobler, James A. Davidson, Gregory A. Wright
  • Publication number: 20200330226
    Abstract: Disclosed prosthetic valves can comprise a sewing ring configured to secure the valve to an implantation site. Some disclosed valves comprise a resiliently collapsible frame having a neutral configuration and a collapsed deployment configuration. Some disclosed frames can self-expand to the neutral configuration when released from the collapsed deployment configuration. Collapsing a disclosed valve can provide convenient access to the sewing ring, such as for securing the valve to the implantation site, as well as for the insertion of the valve through relatively small surgical incisions.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 22, 2020
    Inventors: Hengchu Cao, Brian S. Conklin, Paul A. Schmidt, Grace Myong Kim, James A. Davidson, Hoa Trinh Tran, Kristy Luong Tam
  • Publication number: 20200261222
    Abstract: A method of treating a biological tissue that enables dry storage of said tissue is disclosed. In one embodiment, the method comprises contacting the biological tissue with a non-aqueous treatment solution comprising a polyhydric alcohol and a C1-C3 alcohol and removing a portion of the treatment solution from the solution-treated biological tissue. Also disclosed is biological tissue prepared using the above process and prosthetic devices made with such tissue.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 20, 2020
    Inventors: Bin Tian, James A. Davidson
  • Patent number: 10702383
    Abstract: Disclosed prosthetic valves can comprise a sewing ring configured to secure the valve to an implantation site. Some disclosed valves comprise a resiliently collapsible frame having a neutral configuration and a collapsed deployment configuration. Some disclosed frames can self-expand to the neutral configuration when released from the collapsed deployment configuration. Collapsing a disclosed valve can provide convenient access to the sewing ring, such as for securing the valve to the implantation site, as well as for the insertion of the valve through relatively small surgical incisions.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: July 7, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Hengchu Cao, Brian S. Conklin, Paul A. Schmidt, Grace M. Kim, James A. Davidson, Hoa T. Tran, Kristy L. Tam
  • Publication number: 20200038554
    Abstract: A bioprosthetic tissue having a reduced propensity to calcify in vivo, the bioprosthetic tissue. The bioprosthetic tissue comprises an aldehyde cross-linked and stressed bioprosthetic tissue comprising exposed calcium, phosphate or immunogenic binding sites that have been reacted with a calcification mitigant. The bioprosthetic tissue has a reduced propensity to calcify in vivo as compared to aldehyde cross-linked bioprosthetic tissue that has not been stressed and reacted with the calcification mitigant.
    Type: Application
    Filed: October 7, 2019
    Publication date: February 6, 2020
    Inventors: James A. Davidson, Jeffrey S. Dove, Darin P. Dobler
  • Patent number: 10524945
    Abstract: Stents can become twisted during deployment within tortuous vessels such that proper expansion against the vessel wall is inhibited. Stents can be twisted prior to deployment in a direction opposite the direction of twisting during deployment to facilitate full expansion of the stent against the vessel wall along the stent's entire length.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: January 7, 2020
    Assignee: COVIDIEN LP
    Inventors: James A. Davidson, Masoud Molaei
  • Patent number: 10434218
    Abstract: A treatment for bioprosthetic tissue used in implants or for assembled bioprosthetic heart valves to reduce in vivo calcification is disclosed. The method includes preconditioning, pre-stressing, or pre-damaging fixed bioprosthetic tissue in a manner that mimics the damage associated with post-implant use, while, and/or subsequently applying a calcification mitigant such as a capping agent or a linking agent to the damaged tissue. The capping agent suppresses the formation of binding sites in the tissue that are exposed or generated by the damage process (service stress) and otherwise would, upon implant, attract calcium, phosphate, immunogenic factors, or other precursors to calcification. The linking agent will act as an elastic reinforcement or shock-absorbing spring element in the tissue structure at the site of damage from the pre-stressing.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: October 8, 2019
    Assignee: Edwards Lifesciences Corporation
    Inventors: James A. Davidson, Jeffrey S. Dove, Darin P. Dobler
  • Publication number: 20190262132
    Abstract: A method of treating a biological tissue that enables dry storage of said tissue is disclosed. In one embodiment, the method comprises contacting the biological tissue with a non-aqueous treatment solution comprising a polyhydric alcohol and a C1-C3 alcohol and removing a portion of the treatment solution from the solution-treated biological tissue. Also disclosed is biological tissue prepared using the above process and prosthetic devices made with such tissue.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Bin Tian, James A. Davidson
  • Publication number: 20190209174
    Abstract: Devices and methods for deploying self-cinching surgical clips. A device can access at least two layers of tissue or material from only one side of the tissue or material and puncture through the two layers of tissue or material. The various configurations of clips disclosed herein can be made of a superelastic material such as Nitinol, and have a constrained and a relaxed state, and no sharp edges or tips so as to reduce tissue irritation following deployment. The clip can be disposed within the housing of the delivery device and held in a constrained state until deployment wherein the clip assumes its relaxed state, where the ends of the clip can be brought into close approximation, thereby securing the layers of tissue or material together.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Brian S. Conklin, James A. Davidson, Ralph Schneider