Patents by Inventor James A. Driscoll

James A. Driscoll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240096016
    Abstract: A system for virtual object asset generation and methods for making and using same. The system can create 3D surface models of objects in video space that provide a dynamic, frame and subframe solve of the models for object generation in streaming video. Advantageously, the system can yield more accurate results by providing more granular frame sequencing for generated virtual object assets. The system can utilize poses and derivation of location for a number of computer-generated virtual cameras to remove any need for additional data capture from physical cameras. The system can utilize a detailed muscle segmentation process, layered on top of a universal solve process, to create optimized realistic movement of the virtual objects in space and time that have a more realistic interaction with liquids and liquid objects in that space. The system likewise can permit additional layered effects to be applied over a created digital object.
    Type: Application
    Filed: August 3, 2023
    Publication date: March 21, 2024
    Inventors: Wilfred C. Driscoll, III, Louis James-Karel Normandin
  • Publication number: 20230378745
    Abstract: A method, apparatus, and system for disconnecting loads from the electrical grid based on a power line frequency are disclosed. An electricity meter may monitor a power line frequency of a source power line connected to the electricity meter, and in response to determining that the power line frequency is lower than a disconnect threshold frequency, may open an internal switch and disconnect a load side output of the electricity meter from the source power line.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Timothy James Driscoll, Gokulmuthu Narayanaswamy
  • Patent number: 11799286
    Abstract: A method, apparatus, and system for disconnecting loads from the electrical grid based on a power line frequency are disclosed. An electricity meter may monitor a power line frequency of a source power line connected to the electricity meter, and in response to determining that the power line frequency is lower than a disconnect threshold frequency, may open an internal switch and disconnect a load side output of the electricity meter from the source power line.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: October 24, 2023
    Assignee: Itron, Inc.
    Inventors: Timothy James Driscoll, Gokulmuthu Narayanaswamy
  • Publication number: 20230318283
    Abstract: A method, apparatus, and system for disconnecting loads from the electrical grid based on a power line frequency are disclosed. An electricity meter may monitor a power line frequency of a source power line connected to the electricity meter, and in response to determining that the power line frequency is lower than a disconnect threshold frequency, may open an internal switch and disconnect a load side output of the electricity meter from the source power line.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 5, 2023
    Inventors: Timothy James Driscoll, Gokulmuthu Narayanaswamy
  • Publication number: 20230194582
    Abstract: In an electrical grid, several electricity meters may be associated with the same transformer, and may measure electricity sold to respective customers. In an example, one electricity meter executes manager software, while the other electricity meters execute agent software. One or more applications operated on each electricity meter, and control metrology devices, data processing, operation of radio(s) and/or a powerline communications modem, aspects of electrical phase determination, etc. The agent software operating on each electricity meter may relay messages from applications operating on that electricity meter to other (possibly similar) applications operating on other electricity meters. Each message sent by each instantiation of agent software may include a networking score of that electricity meter. The manager software may additionally communicate with a data collector and/or main office server(s).
    Type: Application
    Filed: December 16, 2021
    Publication date: June 22, 2023
    Inventors: Timothy James Driscoll, Gokulmuthu Narayanaswamy, Robert Carl Sonderegger, Michael Hogan Dann
  • Patent number: 11570268
    Abstract: A proxy apparatus acts as an intermediary between one or more bot apparatuses and one or more communication channels. The proxy apparatus connects a communication channel to a bot apparatus for the exchange of messages. A user can interact with the bot apparatus through the communication channel. The proxy apparatus is configured to perform one or more operations or services. Example operations include, but are not limited to, registration, authentication and authorization, the recordation of telemetry data, schema transformation, and identity transformation.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: January 31, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Daniel James Driscoll
  • Patent number: 11340264
    Abstract: Techniques for identifying electrical theft are described herein. In an example, a secondary voltage of a transformer may be inferred by repeated voltage and current measurement at each meter associated with the transformer. A difference in measured voltage values, divided by a difference in measured current values, estimates impedance at the meter. The calculated impedance, together with measured voltage and current values, determine a voltage at the transformer secondary. Such voltages calculated by each meter associated with a transformer may be averaged, to indicate the transformer secondary voltage. A transformer having lower-than-expected secondary voltage is identified, based in part on comparison to the secondary voltages of other transformers. Each meter associated with the identified transformer may be evaluated to determine if the unexpected voltage is due to a load on the transformer. If a load did not result in the unexpected secondary voltage, power diversion may be reported.
    Type: Grant
    Filed: August 1, 2020
    Date of Patent: May 24, 2022
    Assignee: Itron, Inc.
    Inventors: Timothy James Driscoll, Robert Sonderegger
  • Publication number: 20200363454
    Abstract: Techniques for identifying electrical theft are described herein. In an example, a secondary voltage of a transformer may be inferred by repeated voltage and current measurement at each meter associated with the transformer. A difference in measured voltage values, divided by a difference in measured current values, estimates impedance at the meter. The calculated impedance, together with measured voltage and current values, determine a voltage at the transformer secondary. Such voltages calculated by each meter associated with a transformer may be averaged, to indicate the transformer secondary voltage. A transformer having lower-than-expected secondary voltage is identified, based in part on comparison to the secondary voltages of other transformers. Each meter associated with the identified transformer may be evaluated to determine if the unexpected voltage is due to a load on the transformer. If a load did not result in the unexpected secondary voltage, power diversion may be reported.
    Type: Application
    Filed: August 1, 2020
    Publication date: November 19, 2020
    Inventors: Timothy James Driscoll, Robert Sonderegger
  • Patent number: 10732203
    Abstract: Techniques for identifying electrical theft are described herein. In an example, a secondary voltage of a transformer may be inferred by repeated voltage and current measurement at each meter associated with the transformer. A difference in measured voltage values, divided by a difference in measured current values, estimates impedance at the meter. The calculated impedance, together with measured voltage and current values, determine a voltage at the transformer secondary. Such voltages calculated by each meter associated with a transformer may be averaged, to indicate the transformer secondary voltage. A transformer having lower-than-expected secondary voltage is identified, based in part on comparison to the secondary voltages of other transformers. Each meter associated with the identified transformer may be evaluated to determine if the unexpected voltage is due to a load on the transformer. If a load did not result in the unexpected secondary voltage, power diversion may be reported.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: August 4, 2020
    Assignee: Itron, Inc.
    Inventors: Timothy James Driscoll, Robert Sonderegger
  • Patent number: 10724977
    Abstract: Techniques for detecting high impedance conditions in an electrical grid are described herein. In one example, impedance is calculated for each of a plurality of locations within the electrical grid, such as at electrical meters. The impedances may be calculated as a change in voltage divided by a change in current, such as between sequential voltage/current measurements. Statistics may be maintained, including the calculated impedances. In three examples, statistics may be used to identify growth in impedance over multiple days, to identify growth in impedance over multiple hours, and to identify a meter for which impedance is higher than impedance for other meters attached to a single transformer. In a further example, instances of impedance over a threshold value may be identified, from among the maintained statistics. The instances of high impedance may be reported for reasons including cost and safety.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: July 28, 2020
    Assignee: Itron, Inc.
    Inventors: Robert Sonderegger, Timothy James Driscoll
  • Patent number: 10459016
    Abstract: Determination of electrical network topology and connectivity are described herein. A zero-crossing is indicated at a time when the line voltage of a conducting wire in an electrical grid is zero. Such zero-crossings may be used to measure time within a smart grid, and to determine the connectivity of, and the electrical phase used by, particular network elements. A first meter may receive a phase angle determination (PAD) message, including zero-crossing information, sent from a second meter, hereafter called a reference meter. The first meter may compare the received zero-crossing information to its own zero-crossing information. A phase difference may be determined between the first meter and the reference meter from which the PAD message originated. The first meter may pass the PAD message to additional meters, which propagate the message through the network. Accordingly, an electrical phase used by meters within the network may be determined.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 29, 2019
    Assignee: Itron, Inc.
    Inventors: Timothy James Driscoll, Hartman Van Wyk, Robert Sonderegger, Chris Higgins
  • Publication number: 20190323978
    Abstract: Techniques for detecting high impedance conditions in an electrical grid are described herein. In one example, impedance is calculated for each of a plurality of locations within the electrical grid, such as at electrical meters. The impedances may be calculated as a change in voltage divided by a change in current, such as between sequential voltage/current measurements. Statistics may be maintained, including the calculated impedances. In three examples, statistics may be used to identify growth in impedance over multiple days, to identify growth in impedance over multiple hours, and to identify a meter for which impedance is higher than impedance for other meters attached to a single transformer. In a further example, instances of impedance over a threshold value may be identified, from among the maintained statistics. The instances of high impedance may be reported for reasons including cost and safety.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 24, 2019
    Inventors: Robert Sonderegger, Timothy James Driscoll
  • Patent number: 10338017
    Abstract: Techniques for detecting high impedance conditions in an electrical grid are described herein. In one example, impedance is calculated for each of a plurality of locations within the electrical grid, such as at electrical meters. The impedances may be calculated as a change in voltage divided by a change in current, such as between sequential voltage/current measurements. Statistics may be maintained, including the calculated impedances. In three examples, statistics may be used to identify growth in impedance over multiple days, to identify growth in impedance over multiple hours, and to identify a meter for which impedance is higher than impedance for other meters attached to a single transformer. In a further example, instances of impedance over a threshold value may be identified, from among the maintained statistics. The instances of high impedance may be reported for reasons including cost and safety.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: July 2, 2019
    Assignee: Itron, Inc.
    Inventors: Robert Sonderegger, Timothy James Driscoll
  • Publication number: 20190089798
    Abstract: A proxy apparatus acts as an intermediary between one or more bot apparatuses and one or more communication channels. The proxy apparatus connects a communication channel to a bot apparatus for the exchange of messages. A user can interact with the bot apparatus through the communication channel. The proxy apparatus is configured to perform one or more operations or services. Example operations include, but are not limited to, registration, authentication and authorization, the recordation of telemetry data, schema transformation, and identity transformation.
    Type: Application
    Filed: September 21, 2017
    Publication date: March 21, 2019
    Applicant: Microsoft Technology Licensing, LLC
    Inventor: Daniel James Driscoll
  • Publication number: 20180156851
    Abstract: Determination of electrical network topology and connectivity are described herein. A zero-crossing is indicated at a time when the line voltage of a conducting wire in an electrical grid is zero. Such zero-crossings may be used to measure time within a smart grid, and to determine the connectivity of, and the electrical phase used by, particular network elements. A first meter may receive a phase angle determination (PAD) message, including zero-crossing information, sent from a second meter, hereafter called a reference meter. The first meter may compare the received zero-crossing information to its own zero-crossing information. A phase difference may be determined between the first meter and the reference meter from which the PAD message originated. The first meter may pass the PAD message to additional meters, which propagate the message through the network. Accordingly, an electrical phase used by meters within the network may be determined.
    Type: Application
    Filed: December 4, 2017
    Publication date: June 7, 2018
    Inventors: Timothy James Driscoll, Hartman Van Wyk, Robert Sonderegger, Chris Higgins
  • Patent number: 9835662
    Abstract: Determination of electrical network topology and connectivity are described herein. A zero-crossing is indicated at a time when the line voltage of a conducting wire in an electrical grid is zero. Such zero-crossings may be used to measure time within a smart grid, and to determine the connectivity of, and the electrical phase used by, particular network elements. A first meter may receive a phase angle determination (PAD) message, including zero-crossing information, sent from a second meter, hereafter called a reference meter. The first meter may compare the received zero-crossing information to its own zero-crossing information. A phase difference may be determined between the first meter and the reference meter from which the PAD message originated. The first meter may pass the PAD message to additional meters, which propagate the message through the network. Accordingly, an electrical phase used by meters within the network may be determined.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: December 5, 2017
    Assignee: Itron, Inc.
    Inventors: Timothy James Driscoll, Hartman Van Wyk, Robert C Sonderegger, Christopher M Higgins
  • Publication number: 20170315153
    Abstract: Techniques for identifying electrical theft are described herein. In an example, a secondary voltage of a transformer may be inferred by repeated voltage and current measurement at each meter associated with the transformer. A difference in measured voltage values, divided by a difference in measured current values, estimates impedance at the meter. The calculated impedance, together with measured voltage and current values, determine a voltage at the transformer secondary. Such voltages calculated by each meter associated with a transformer may be averaged, to indicate the transformer secondary voltage. A transformer having lower-than-expected secondary voltage is identified, based in part on comparison to the secondary voltages of other transformers. Each meter associated with the identified transformer may be evaluated to determine if the unexpected voltage is due to a load on the transformer. If a load did not result in the unexpected secondary voltage, power diversion may be reported.
    Type: Application
    Filed: July 17, 2017
    Publication date: November 2, 2017
    Inventors: Timothy James Driscoll, Robert Sonderegger
  • Patent number: 9709604
    Abstract: Techniques for identifying electrical theft are described herein. In an example, a secondary voltage of a transformer may be inferred by repeated voltage and current measurement at each meter associated with the transformer. A difference in measured voltage values, divided by a difference in measured current values, estimates impedance at the meter. The calculated impedance, together with measured voltage and current values, determine a voltage at the transformer secondary. Such voltages calculated by each meter associated with a transformer may be averaged, to indicate the transformer secondary voltage. A transformer having lower-than-expected secondary voltage is identified, based in part on comparison to the secondary voltages of other transformers. Each meter associated with the identified transformer may be evaluated to determine if the unexpected voltage is due to a load on the transformer. If a load did not result in the unexpected secondary voltage, power diversion may be reported.
    Type: Grant
    Filed: May 3, 2015
    Date of Patent: July 18, 2017
    Assignee: Itron, Inc.
    Inventors: Timothy James Driscoll, Robert Sonderegger
  • Patent number: 9514026
    Abstract: Various arrangements for debugging logic being executed by a webserver is presented. A virtual machine of the webserver may execute runtime threads for a plurality of remote users. The web server may compile business logic code received from a developer computer system via a web-based interface into an logic insight injected code. The logic insight injected code may be compiled from the business logic code to include debugging functionality. The virtual machine of the webserver may execute the logic insight injected code concurrently with the runtime threads being executed for the plurality of remote users. The debugging functionality of the logic insight injected code being executed may not affect execution of the runtime threads for the plurality of users.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: December 6, 2016
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: John Smiljanic, Shailesh Vinayaka, James Driscoll
  • Publication number: 20160327603
    Abstract: Techniques for detecting high impedance conditions in an electrical grid are described herein. In one example, impedance is calculated for each of a plurality of locations within the electrical grid, such as at electrical meters. The impedances may be calculated as a change in voltage divided by a change in current, such as between sequential voltage/current measurements. Statistics may be maintained, including the calculated impedances. In three examples, statistics may be used to identify growth in impedance over multiple days, to identify growth in impedance over multiple hours, and to identify a meter for which impedance is higher than impedance for other meters attached to a single transformer. In a further example, instances of impedance over a threshold value may be identified, from among the maintained statistics. The instances of high impedance may be reported for reasons including cost and safety.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 10, 2016
    Inventors: Robert Sonderegger, Timothy James Driscoll