Patents by Inventor James A. Faust

James A. Faust has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11247268
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: February 15, 2022
    Assignee: KENNAMETAL INC.
    Inventors: Qingjun Zheng, Yixiong Liu, James A. Faust, Mark J. Rowe, Danie J. De Wet, Sudharsan Subbaiyan, Michael J. Meyer
  • Publication number: 20200384541
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Application
    Filed: February 6, 2020
    Publication date: December 10, 2020
    Inventors: Qingjun ZHENG, Yixiong Liu, James A. Faust, Mark D. Rowe, Danie J. De Wet, Sudharsan Subbaiyan, Michael J. Meyer
  • Patent number: 10562101
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: February 18, 2020
    Assignee: KENNAMETAL INC.
    Inventors: Qingjun Zheng, Yixiong Liu, James A. Faust, Mark J. Rowe, Danie J. De Wet, Sudharsan Subbaiyan, Michael J. Meyer
  • Patent number: 10391557
    Abstract: In one aspect, composite articles are described herein employing cobalt-based alloy claddings exhibiting high hardness and wear resistance while maintaining desirable integrity and adhesion to surfaces of metallic substrates. A composite article, in some embodiments, comprises a metallic substrate and a composite cladding metallurgically bonded to one or more surfaces of the metallic substrate, the composite cladding including cobalt-based alloy having a chromium gradient, wherein chromium content increases in a direction from the composite cladding surface to an interface of the composite cladding with the metallic substrate.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: August 27, 2019
    Assignee: KENNAMETAL INC.
    Inventors: James A. Faust, Daniel Bourlotos, Qingjun Zheng, Michael Meyer
  • Patent number: 10272497
    Abstract: In one aspect, methods of making cladded articles are described herein. A method of making a cladded article, in some embodiments, comprises disposing over a surface of a metallic substrate a sheet comprising organic binder and powder metal or powder alloy having a solidus temperature at least 100° C. less than the metallic substrate and heating the powder metal or powder alloy to provide a sintered metal or sintered alloy cladding metallurgically bonded to the metallic substrate.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: April 30, 2019
    Assignee: KENNAMETAL INC.
    Inventors: Qingjun Zheng, Yixiong Liu, James A. Faust, Danie J. De Wet, Sudharsan Subbaiyan, Piyamanee Komolwit, Mark J. Rowe
  • Patent number: 9862029
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 9, 2018
    Assignee: KENNAMETAL INC
    Inventors: Qingjun Zheng, Yixiong Liu, James A Faust, Mark J Rowe, Danie J De Wet, Sudharsan Subbaiyan, Michael J Meyer
  • Publication number: 20170341148
    Abstract: In one aspect, composite articles are described herein employing cobalt-based alloy claddings exhibiting high hardness and wear resistance while maintaining desirable integrity and adhesion to surfaces of metallic substrates. A composite article, in some embodiments, comprises a metallic substrate and a composite cladding metallurgically bonded to one or more surfaces of the metallic substrate, the composite cladding including cobalt-based alloy having a chromium gradient, wherein chromium content increases in a direction from the composite cladding surface to an interface of the composite cladding with the metallic substrate.
    Type: Application
    Filed: May 26, 2016
    Publication date: November 30, 2017
    Inventors: James A. FAUST, Daniel Bourlotos, Qingjun ZHENG, Michael MEYER
  • Publication number: 20170129015
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Application
    Filed: January 24, 2017
    Publication date: May 11, 2017
    Inventors: Qingjun ZHENG, Yixiong LIU, James A. FAUST, Mark J. ROWE, Danie J. DE WET, Sudharsan SUBBAIYAN, Michael J. MEYER
  • Publication number: 20160193660
    Abstract: In one aspect, methods of making cladded articles are described herein. A method of making a cladded article, in some embodiments, comprises disposing over a surface of a metallic substrate a sheet comprising organic binder and powder metal or powder alloy having a solidus temperature at least 100° C. less than the metallic substrate and heating the powder metal or powder alloy to provide a sintered metal or sintered alloy cladding metallurgically bonded to the metallic substrate.
    Type: Application
    Filed: March 17, 2016
    Publication date: July 7, 2016
    Inventors: Qingjun ZHENG, Yixiong Liu, James A. Faust, Danie J. De Wet, Sudharsan Subbaiyan, Piyamanee Komolwit, Mark J. Rowe
  • Patent number: 9346101
    Abstract: In one aspect, methods of making cladded articles are described herein. A method of making a cladded article, in some embodiments, comprises disposing over a surface of a metallic substrate a sheet comprising organic binder and powder metal or powder alloy having a solidus temperature at least 100° C. less than the metallic substrate and heating the powder metal or powder alloy to provide a sintered metal or sintered alloy cladding metallurgically bonded to the metallic substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 24, 2016
    Assignee: KENNAMETAL INC.
    Inventors: Qingjun Zheng, Yixiong Liu, James A Faust, Danie J De Wet, Sudharsan Subbaiyan, Piyamanee Komolwit, Mark J Rowe
  • Publication number: 20140271318
    Abstract: In one aspect, methods of making freestanding metal matrix composite articles and alloy articles are described. A method of making a freestanding composite article described herein comprises disposing over a surface of the temporary substrate a layered assembly comprising a layer of infiltration metal or alloy and a hard particle layer formed of a flexible sheet comprising organic binder and the hard particles. The layered assembly is heated to infiltrate the hard particle layer with metal or alloy providing a metal matrix composite, and the metal matrix composite is separated from the temporary substrate. Further, a method of making a freestanding alloy article described herein comprises disposing over the surface of a temporary substrate a flexible sheet comprising organic binder and powder alloy and heating the sheet to provide a sintered alloy article. The sintered alloy article is then separated from the temporary substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Kennametal Inc.
    Inventors: Qingjun Zheng, Yixiong Liu, James A. Faust, Mark J. Rowe, Danie J. De Wet, Sudharsan Subbaiyan, Michael J. Meyer
  • Publication number: 20140271319
    Abstract: In one aspect, methods of making cladded articles are described herein. A method of making a cladded article, in some embodiments, comprises disposing over a surface of a metallic substrate a sheet comprising organic binder and powder metal or powder alloy having a solidus temperature at least 100° C. less than the metallic substrate and heating the powder metal or powder alloy to provide a sintered metal or sintered alloy cladding metallurgically bonded to the metallic substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Kennametal Inc.
    Inventors: Qingjun Zheng, Yixiong Liu, James A. Faust, Danie J. De Wet, Sudharsan Subbaiyan, Piyamanee Komolwit, Mark J. Rowe
  • Patent number: 5868047
    Abstract: The present invention relates to the field of insert bits (10) for use with powered screwdrivers. The formed bits (10) may be treated to have a desired microstructure by either an austempering process or by the three step heating, quenching, tempering process. The bits (10) may also be electro-polished. Austempering provides for improved function and increased fatigue life and electro-polishing provides for improved function and increased fatigue life and torque capacity. The bits (10) and may have reduced diameter midportions (30), particularly for use with impact drivers.
    Type: Grant
    Filed: July 23, 1996
    Date of Patent: February 9, 1999
    Assignee: Vermont American Corporation
    Inventors: James A. Faust, Marzell Chanton, Carl A. Shumaker