Patents by Inventor James A. Gleeson

James A. Gleeson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9783993
    Abstract: An adjustable building panel support device comprising a building panel support element, a support bracket and at least one connector suitable for attaching an insulated building panel to a substrate for constructing an insulated wall section. The building support element and the support bracket are fixable together at a user determinable position by the at least one connector whereby the distance between the building panel support element and the support bracket can be varied to accommodate surface variations that may be present on a substrate surface.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: October 10, 2017
    Assignee: James Hardie Technology Limited
    Inventors: James A. Gleeson, Jeremy McCandless
  • Publication number: 20170130464
    Abstract: An adjustable building panel support device comprising a building panel support element, a support bracket and at least one connector suitable for attaching an insulated building panel to a substrate for constructing an insulated wall section. The building support element and the support bracket are fixable together at a user determinable position by the at least one connector whereby the distance between the building panel support element and the support bracket can be varied to accommodate surface variations that may be present on a substrate surface.
    Type: Application
    Filed: November 4, 2016
    Publication date: May 11, 2017
    Inventors: James A. Gleeson, Jeremy McCandless
  • Patent number: 8603239
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: December 10, 2013
    Assignee: James Hardie Technology Limited
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Publication number: 20120260827
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 18, 2012
    Applicant: JAMES HARDIE TECHNOLOGY LIMITED
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Patent number: 8182606
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: May 22, 2012
    Assignee: James Hardie Technology Limited
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Publication number: 20100242802
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 30, 2010
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Patent number: 7727329
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: June 1, 2010
    Assignee: James Hardie Technology Limited
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Patent number: 7658794
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: February 9, 2010
    Assignee: James Hardie Technology Limited
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Patent number: 7524555
    Abstract: A pre-finished, moisture resistant and durable building material is provided. In one embodiment the building material includes a fiber cement substrate having a first side and a second side, at least one resin impregnated paper over at least one of the first and second sides, and a stress-relieving polymeric film between the fiber cement substrate and the at least one resin impregnated paper, the polymer film acting as a stress relaxer between the fiber cement substrate and the at least one resin impregnated paper. In another embodiment, a stress-relieving polymeric coating or film is provided between resin penetrated sheets and a substrate. In another embodiment, a process for bonding the resin penetrated sheets to the substrate is provided.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: April 28, 2009
    Assignee: James Hardie International Finance B.V.
    Inventors: Weiling Peng, James A. Gleeson, Donald J. Merkley
  • Publication number: 20080203365
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Application
    Filed: February 28, 2008
    Publication date: August 28, 2008
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Patent number: 7037572
    Abstract: Disclosed herein is a trough-edge building panel used in the fabrication of panelized wall systems with elastomeric joints that are resistant to cracking. The panels are preferably fiber cement. The front surface of each panel has a trough adjacent to an edge of the panel. Panels are fastened to a frame with the trough-edges adjacent to each other. A joint tape is applied to the seam between the panels such that the edges of the joint tape fall within the troughs of the adjacent panels. The wall is then finished with an elastomeric finish. Also disclosed is a method of manufacturing the trough-edge panels.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: May 2, 2006
    Assignee: James Hardie International Finance B.V.
    Inventor: James A. Gleeson
  • Patent number: 6988343
    Abstract: Disclosed herein are panelized wall systems and methods for their construction, wherein the wall systems have elastomeric joints that are resistant to cracking. The walls are constructed with trough-edge building panels. The trough-edge building panels are preferably fiber cement. The front surface of each panel has a trough adjacent to an edge of the panel. Panels are fastened to a frame with the trough-edges adjacent to each other. A joint tape is applied to the seam between the panels such that the edges of the joint tape fall within the troughs of the adjacent panels. The wall is then finished with an elastomeric finish.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: January 24, 2006
    Assignee: Jmaes Hardie Research PTY Limited
    Inventors: James A. Gleeson, Weiling Peng
  • Patent number: 6941720
    Abstract: This invention generally pertains to a composite building material comprising a lightweight core with a thin fiber cement facing on one side of the core and a second facing material on the other side. The fiber cement facing that is used on at least one of the faces of the building material is 3/16? or less, more preferably ?? or less. The green fiber cement facing is preferably formed by a slurry-dewatering process to form a sheet that is in a plastic, uncured, state prior to manufacture of the composite. The composite building material is assembled in an uncured state and then cured.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 13, 2005
    Assignee: James Hardie International Finance B.V.
    Inventors: Harvey Dale DeFord, James A. Gleeson, Donald J. Merkley
  • Publication number: 20040163331
    Abstract: A pre-finished, moisture resistant and durable building material is provided. In one embodiment the building material includes a fiber cement substrate having a first side and a second side, at least one resin impregnated paper over at least one of the first and second sides, and a stress-relieving polymeric film between the fiber cement substrate and the at least one resin impregnated paper, the polymer film acting as a stress relaxer between the fiber cement substrate and the at least one resin impregnated paper. In another embodiment, a stress-relieving polymeric coating or film is provided between resin penetrated sheets and a substrate. In another embodiment, a process for bonding the resin penetrated sheets to the substrate is provided.
    Type: Application
    Filed: February 3, 2004
    Publication date: August 26, 2004
    Inventors: Weiling Peng, James A. Gleeson, Donald J. Merkley
  • Patent number: 6689451
    Abstract: This invention relates generally to a pre-finished, moisture resistant and durable building material that is able to diffuse stress caused by variations in temperature and climate. One preferred embodiment of the building material includes a fiber cement substrate, at least one resin impregnated paper, and a stress-relieving elastomeric film between the fiber cement substrate and the resin impregnated paper, wherein the elastomeric film acts as a stress relaxer between the fiber cement substrate and the one resin impregnated paper.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: February 10, 2004
    Assignee: James Hardie Research Pty Limited
    Inventors: Weiling Peng, James A. Gleeson, Donald J. Merkley
  • Publication number: 20030205172
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Application
    Filed: April 15, 2003
    Publication date: November 6, 2003
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman
  • Publication number: 20030200721
    Abstract: A building material (40) is provided comprising fiber-cement (10) laminated to gypsum (20) to form a single piece laminate composite. This single piece laminate composite exhibits improved fire resistance and surface abuse and impact resistance, but achieves these properties without the excessive weight and thickness of two piece systems. Additionally, because of the reduced thickness, the preferred laminate building material is easier to cut and is quicker and easier to install than two piece systems. Furthermore, forming the fiber-cement and gypsum into a single piece laminate eliminates the need to install two separate pieces of building material, thereby simplifying installation. In one embodiment, a ⅝″ thick laminate composite is provided comprising a ½″ thick gypsum panel laminated to a ⅛″ thick fiber-cement sheet, the laminate composite having a fire resistance rating of 1 hour when measured in accordance with ASTM E119.
    Type: Application
    Filed: May 13, 2003
    Publication date: October 30, 2003
    Inventors: James A. Gleeson, Mark T. Fisher, Donald J. Merkley
  • Publication number: 20030126822
    Abstract: Disclosed herein is a trough-edge building panel used in the fabrication of panelized wall systems with elastomeric joints that are resistant to cracking. The panels are preferably fiber cement. The front surface of each panel has a trough adjacent to an edge of the panel. Panels are fastened to a frame with the trough-edges adjacent to each other. A joint tape is applied to the seam between the panels such that the edges of the joint tape fall within the troughs of the adjacent panels. The wall is then finished with an elastomeric finish. Also disclosed is a method of manufacturing the trough-edge panels.
    Type: Application
    Filed: November 27, 2002
    Publication date: July 10, 2003
    Inventor: James A. Gleeson
  • Publication number: 20030126817
    Abstract: Disclosed herein are panelized wall systems and methods for their construction, wherein the wall systems have elastomeric joints that are resistant to cracking. The walls are constructed with trough-edge building panels. The trough-edge building panels are preferably fiber cement. The front surface of each panel has a trough adjacent to an edge of the panel. Panels are fastened to a frame with the trough-edges adjacent to each other. A joint tape is applied to the seam between the panels such that the edges of the joint tape fall within the troughs of the adjacent panels. The wall is then finished with an elastomeric finish.
    Type: Application
    Filed: November 27, 2002
    Publication date: July 10, 2003
    Inventors: James A. Gleeson, Weiling Peng
  • Patent number: 6572697
    Abstract: This invention relates to a formulation with the addition of low density additives of volcanic ash, hollow ceramic microspheres or a combination of microspheres and volcanic ash or other low density additives into cementitious cellulose fiber reinforced building materials. This formulation is advantageously lightweight or low density compared as compared to current fiber cement products without the increased moisture expansion and freeze-thaw degradation usually associated with the addition of lightweight inorganic materials to fiber cement mixes. The low density additives also give the material improved thermal dimensional stability.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: June 3, 2003
    Assignee: James Hardie Research Pty Limited
    Inventors: James A. Gleeson, Kalynne H. Paradis, Brian P. Sloane, David L. Melmeth, Dean M. Seligman