Patents by Inventor James A. Kane

James A. Kane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140270342
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Application
    Filed: January 15, 2013
    Publication date: September 18, 2014
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Publication number: 20140237014
    Abstract: The described system and method uses data from interaction between a known wave and an unknown wave to analyze or characterize the unknown wave using cross correlation frequency resolved optical gating (X-FROG). The system may obtain X-FROG trace data from the interaction between the two waves. The system analyzes the X-FROG trace data using a modified principal component generalized projection method strategy to invert the X-FROG trace data, analyzing or characterizing the unknown wave. Results of the analysis can be provided in real time and displayed.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Inventor: Daniel James Kane
  • Patent number: 8791428
    Abstract: A value document authentication system comprising a value document substrate having a luminescent compound disposed on or in at least a portion of the value document substrate, wherein the luminescent compound (i) comprises a host lattice having at least one metallic ion with magnetic properties and is doped with at least one rare earth ion capable of emitting infrared radiation with at least one distinct infrared wavelength when excited with an exciting light source having sufficient energy to excite emission from the luminescent compound and (ii) has a pre-determined ratio of metallic ions to rare earth ions such that the ratio corresponds to a parameter of a pre-selected decision criteria, both of which properties are measured at the same location on the value document and used to authenticate the value document.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: July 29, 2014
    Assignee: Honeywell International Inc.
    Inventors: Carsten Lau, James Kane, William Ross Rapoport
  • Patent number: 8759794
    Abstract: Articles, methods of validating the articles, and validating systems are provided herein. In an embodiment, an article includes a substrate and a security feature on the substrate. The security feature includes a first region that has a first ink composition and a second region that has a second ink composition. The first ink composition includes a first luminescent phosphor and the second ink composition includes a second luminescent phosphor that is different from the first luminescent phosphor. The first luminescent phosphor and the second luminescent phosphor have indistinguishable excitation energy wavelengths, indistinguishable emission wavelengths, and distinguishable temporal decay properties.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: June 24, 2014
    Assignee: Honeywell International Inc.
    Inventors: William Ross Rapoport, James Kane, Carsten Lau
  • Publication number: 20140151997
    Abstract: Luminescent borates, luminescent materials, and articles incorporating such borates are provided herein. An embodiment of a luminescent borate includes a host borate that has a B9O16-comprising crystal lattice. Neodymium and/or ytterbium are present within the host borate, and one or more substitutable elements are optionally present along with the neodymium and/or ytterbium within the host borate. The one or more substitutable elements are different from neodymium and ytterbium.
    Type: Application
    Filed: March 14, 2013
    Publication date: June 5, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: James Kane, Carsten Lau, William Ross Rapoport
  • Patent number: 8742369
    Abstract: Value documents or other articles having authentication features, authentication apparatuses, and methods of authentication are provided that relate to the use of taggants that absorb radiation from an illumination source and emit radiation in a manner that has a maximum intensity occurring a duration of time after the illumination source has been switched off. The taggants include a crystalline composition comprising a host crystal lattice doped with a first rare earth active ion, and in some examples a second rare earth active ion.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: June 3, 2014
    Assignee: Honeywell International Inc.
    Inventors: William Ross Rapoport, Carsten Lau, James Kane
  • Patent number: 8685745
    Abstract: A multilayered optical sensing patch, for the measurement of conditions, such as pH, oxygen level, etc, within containers, is provided. The multilayered optical sensing patch of the present invention is comprised of a heat sealable polymer substrate layer, and a polymeric sensing membrane later attached thereto. The polymer sensing membrane layer is formed of a porous polymer support membrane, and an optical sensing composition (comprising a reactive indicator) covalently bonded thereto. The heat sealable polymer substrate layer is capable of being securely bonded to the inner layer of bioreactor bags, as well as the porous polymer support substrate layer. Further, the porous polymer support membrane layer provides a firm supporting structure for the polymeric sensing layer, thereby protecting the optical sensing composition disposed therein from degradation/damage.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: April 1, 2014
    Assignee: Polestar Technologies, Inc.
    Inventor: James A. Kane
  • Publication number: 20140021369
    Abstract: Articles, methods of validating the articles, and validating systems are provided herein. In an embodiment, an article includes a substrate and a security feature on the substrate. The security feature includes a first region that has a first ink composition and a second region that has a second ink composition. The first ink composition includes a first luminescent phosphor and the second ink composition includes a second luminescent phosphor that is different from the first luminescent phosphor. The first luminescent phosphor and the second luminescent phosphor have indistinguishable excitation energy wavelengths, indistinguishable emission wavelengths, and distinguishable temporal decay properties.
    Type: Application
    Filed: February 26, 2013
    Publication date: January 23, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: William Ross Rapoport, James Kane, Carsten Lau
  • Patent number: 8628728
    Abstract: A non-invasive, calorimetric infection detector is provided, comprised of a substrate, and one or more indicator compositions disposed upon or incorporated therein. These indicator compositions exhibit a persistent change color when exposed to gaseous oxides of nitrogen and acids formed therefrom, providing a means of detecting NO production in a wound, which has been found to occur at a high level at the onset of infection in a wound. In addition, a bandage is provided, comprised of the detector, as well as a porous portion, and preferably a hydrophobic barrier layer to protect the detector from contamination by water and other fluids draining from the wound. The non-invasive, calorimetric infection detector, and bandage containing same, can be utilized to provide a convenient, easily utilized colorimetric means of detecting the onset of wound infection, thereby enabling caregivers to effectively and timely treat infections.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: January 14, 2014
    Assignee: Polestar Technologies, Inc.
    Inventors: James A Kane, Melissa Ricci, Ranganathan Shashidhar
  • Patent number: 8616460
    Abstract: A method for providing a printed optical illusion image having first and second illusion states, comprising: receiving a specification of an optical illusion image having one or more mutable portions; and printing the optical illusion image on a printing device using a plurality of colorants, wherein one or more of the colorants are appearance mutable colorants having spectral characteristics can be switched between a first colorant state and a second colorant state by application of an appropriate external stimulus. The printed optical illusion image can be switched between the first and second illusion states by applying the appropriate external stimulus to controllably switch the one or more appearance mutable colorants between their first and second colorant states, thereby switching the mutable portions of the printed optical illusion image between corresponding first and second appearance states.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: December 31, 2013
    Assignee: Eastman Kodak Company
    Inventors: Andrew F. Kurtz, Paul James Kane
  • Patent number: 8616461
    Abstract: A printed dynamic optical illusion printed on a printing device using a plurality of colorants, wherein one or more of the colorants are appearance mutable colorants having spectral characteristics that can be controllably switched between a first colorant state and a second colorant state by application of an appropriate external stimulus, and wherein one or more mutable portions of the optical illusion image are printed using at least one appearance mutable colorant. The mutable portions are controllable such that when they are in a first appearance state the printed optical illusion image has a first illusion state, and when they are in a second appearance state the printed optical illusion image has a second illusion state, thereby changing the optical illusion image from the first illusion state to the second illusion state so as to affect the perception of an optical illusion by a human observer.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: December 31, 2013
    Assignee: Eastman Kodak Company
    Inventors: Andrew F. Kurtz, Paul James Kane
  • Publication number: 20130335535
    Abstract: A method of operating a digital camera, includes providing a digital camera, the digital camera including a capture lens, an image sensor, a projector and a processor; using the projector to illuminate one or more objects with a sequence of patterns; and capturing a first sequence of digital images of the illuminated objects including the reflected patterns that have depth information. The method further includes using the processor to analyze the first sequence of digital images including the depth information to construct a second, 3D digital image of the objects; capturing a second 2D digital image of the objects and the remainder of the scene without the reflected patterns, and using the processor to combine the 2D and 3D digital images to produce a modified digital image of the illuminated objects and the remainder of the scene.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Inventors: Paul James Kane, Sen Wang
  • Publication number: 20130323845
    Abstract: A carbon dioxide detector including a sensor component, where the sensor component has a colorimetric indicator salt of a colorimetric pH indicator and a lipophilic phosphonium quaternary cation, a transparent polymer vehicle or a plasticizer not being in a mixture with the colorimetric indicator salt; and a porous memory, a porous polymer membrane in one instance, the colorimetric indicator salt being deposited on a surface of the porous polymer membrane; the colorimetric indicator salt deposited on the porous polymer membrane does not include a transparent polymer vehicle or a plasticizer, and carbon dioxide detection systems using the detector.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventor: James A. Kane
  • Patent number: 8595007
    Abstract: Positive identification of local inhabitants plays an important role in modern military, police and security operations. Since terrorists use all means to masquerade as local inhabitants, the identification of terrorist or hostile suspects becomes an increasingly complicated task. The instant software solution will assist military, police and security forces in the identification of suspects using Voice Print Recognition (VPR) technology. Our VPR software will compare and recognize, or match, specific voice samples with stored, digital voice models (voice prints) for the purpose of establishing or verifying identity. VPR software will support an operator's decision and situational awareness through the verification of a person's identity (for instance: remote access control), but more importantly will assist in the identification of suspect individuals (identifying suspects among a large group of captured individuals).
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: November 26, 2013
    Assignee: NITV Federal Services, LLC
    Inventor: James A. Kane
  • Patent number: 8582820
    Abstract: An image capture device is used to identify object range information, and includes: providing an image capture device, an image sensor, a coded aperture, and a lens; and using the image capture device to capture a digital image of the scene from light passing through the lens and the coded aperture, the scene having a plurality of objects. The method further includes: dividing the digital image into a set of blocks; assigning a point spread function (psf) value to each of the blocks; combining contiguous blocks in accordance with their psf values; producing a set of blur parameters based upon the psf values of the combined blocks and the psf values of the remaining blocks; producing a set of deblurred images based upon the captured image and each of the blur parameters; and using the set of deblurred images to determine the range information for the objects in the scene.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 12, 2013
    Assignee: Apple Inc.
    Inventors: Paul James Kane, Sen Wang
  • Patent number: 8552401
    Abstract: An optical chemical sensor feedback control system is provided comprised of a luminescent sensing film, an optical processor adjacent the sensing film capable of sinusoidally photoexciting the luminescent sensing film and detecting the luminescent emission resulting therefrom, and a computer control means executing a computer program, in communication with the optical processor. The computer control means is operable to control the magnitude of the photoexcitation of the luminescent sensing film, wherein the computer control means receives data regarding the luminescent emission resulting therefrom, analyzes same, and determines the magnitude and phase shift of the luminescence relative to the photoexcitation. Further, the system herein is operable to determine the status of the sensing film, and adjust the magnitude of photoexcitation thereof based on same.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: October 8, 2013
    Assignee: Polestar Technologies, Inc.
    Inventor: James A Kane
  • Patent number: 8445866
    Abstract: Phosphor compositions are provided that can be incorporated into or onto plastic substrates as covert security features. The plastic substrates can be transparent and the phosphor compositions have a refractive index that effectively matches the refractive index of the plastic substrate to maintain the transparency. The phosphor compositions have absorption in the infrared, thus enabling excitation and detection of the compositions with an infrared emitting source.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: May 21, 2013
    Assignee: Honeywell International Inc.
    Inventors: James Kane, William Ross Rapoport, Carsten Lau
  • Publication number: 20130114855
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 9, 2013
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Patent number: 8426871
    Abstract: The production of light of various wavelengths using IR phosphor down conversion techniques using existing LED emissions to pump sensitizer-rare earth ions that emit at other wavelengths. A sensitizer absorbs an LED chip pump emission and then transfers that energy with high quantum efficiency to dopant ions that then emits at their characteristic wavelength.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: April 23, 2013
    Assignee: Honeywell International Inc.
    Inventors: William Ross Rapoport, James Kane, Kirin T. Castelino
  • Patent number: 8400509
    Abstract: A value document authentication apparatus and system that includes value document substrates having a uniform distribution of one or more phosphors that emit infrared radiation in one or more wavelengths, which can be measured at the same location on the value document that is illuminated by a phosphor exciting light source when the document passes the light source with a uniform velocity. The illumination and measurement locations on the value document can be offset. The measured infrared radiation as a series of overlapped measurements along a pre-selected track in the value document represents an intensity profile, which can be normalized after removing high variations. The normalized intensity profile of a test value document can be compared with normalized intensity profile from valid reference documents to authenticate the test value document.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: March 19, 2013
    Assignee: Honeywell International Inc.
    Inventors: William Ross Rapoport, Kwong Wing Au, James Kane, Carsten Lau