Patents by Inventor James A. Mahood

James A. Mahood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090326183
    Abstract: Methods for making a branched polycarbonate-polysiloxane copolymer are provided. An interfacial mixture comprising water, an organic solvent, a polyhydric branching agent, a non-siloxane-containing dihydroxy compound, an endcapping agent, a phase transfer catalyst, and a base is formed. The base and the branching agent are dissolved in the mixture before the non-siloxane-containing dihydroxy compound is added and the interfacial mixture has a basic pH. A first carbonate precursor is added to the interfacial mixture while maintaining the pH at from about 3 to about 9 to form a branched polycarbonate mixture. Next, the pH is increased to from about 8 to about 13 and a siloxane oligomer is added to the branched polycarbonate mixture. The branched polycarbonate mixture is then reacted to form the branched polycarbonate-polysiloxane copolymer.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Laura G. Schultz, James A. Mahood, Brian D. Mullen
  • Publication number: 20090326149
    Abstract: Methods for making a branched polycarbonate are disclosed. An interfacial mixture comprising water, a substantially water-immiscible organic solvent, a dihydroxy compound, a polyhydric branching agent, an endcapping agent, a catalyst, and a base is formed. The base and the branching agent are dissolved in the mixture before the dihydroxy compound is added, and the interfacial mixture has a basic pH. The mixture is reacted by adding a carbonate precursor to the mixture while maintaining the pH between about 8 and about 10 to form the branched polycarbonate. The resulting branched polycarbonates may contain more than 1.5 mole % of the THPE; have residual chloride content of 20 ppm or less; and a weight average molecular weight of about 55,000 or less. They may also be highly transparent.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Laura G. Schultz, James A. Mahood, Brian D. Mullen
  • Patent number: 7531615
    Abstract: A polycarbonate such as aliphatic/aromatic polycarbonate comprises repeating structural carbonate units of the formula (H-1): in which Rh is a radical having the formula (H-2): wherein each of R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, and R28 is independently a hydrogen, a C1-C6 alkyl group, or a halogen substituted C1-C6 alkyl group. The polycarbonate, and a thermoplastic composition thereof, have improved thermal stability, cost-effectiveness, and exhibit improved manufacturability such as, for example, minimum cyclic carbonate formation and minimum amine acceptor requirement.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: May 12, 2009
    Assignee: SABIC innovative Platics IP B.V.
    Inventors: Gary C. Davis, James A. Mahood, James M. Silva, Joshua J. Stone
  • Patent number: 7498397
    Abstract: A copolycarbonate of the formula wherein 5 to 50 mole percent of the total number of R1 groups is derived from a monomer of formula (2) wherein each Rf is independently at each occurrence a halogen atom, a hydrocarbon group having 1 to 10 carbons, or a halogen substituted hydrocarbon group having 1 to 10 carbons, and n is 0 to 4; and 50 to 95 mole percent of the R1 groups are derived from a dihydroxy compound of formula HO—R5—OH, wherein at least 60% of the R5 groups are aromatic, and the dihydroxy compound of formula (3) is not a compound of formula (2), and wherein the copolycarbonate comprises at least 10% fewer carbonate linkages of formula (4) than would be theoretically obtained in a random copolymer made from the same ratio of the monomer of formula (2) and the dihydroxy compound of formula (3).
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: March 3, 2009
    Assignee: SABIC Innovative Plastics IP B.V.
    Inventor: James A. Mahood
  • Patent number: 7495066
    Abstract: A copolycarbonate-polyester, comprising units of formula wherein at least 60 percent of the total number of R1 groups are divalent aromatic organic radicals and the balance thereof are divalent aliphatic or alicyclic radicals; units of formula wherein T is a C7-20 divalent alkyl aromatic radical or a C6-20 divalent aromatic radical, and D is a divalent C6-20 aromatic radical; and units of the formula wherein R2 and R3 are each independently a halogen or a C1-6 alkyl group, R4 is a methyl or phenyl group, each c is independently 0 to 4, and T is as described above.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: February 24, 2009
    Assignee: Sabic Innovative Plastics IP B.V.
    Inventors: Karthik Balakrishnan, James A. Mahood, Adam Zerda
  • Publication number: 20090043070
    Abstract: A copolycarbonate-polyester, comprising units of formula wherein at least 60 percent of the total number of R1 groups are divalent aromatic organic radicals and the balance thereof are divalent aliphatic or alicyclic radicals; units of formula wherein T is a C7-20 divalent alkyl aromatic radical or a C6-20 divalent aromatic radical, and D is a divalent C6-20 aromatic radical; and units of the formula wherein R2 and R3 are each independently a halogen or a C1-6 alkyl group, R4 is a methyl or phenyl group, each c is independently 0 to 4, and T is as described above. A method of making a copolycarbonate-polyester is also disclosed.
    Type: Application
    Filed: October 21, 2008
    Publication date: February 12, 2009
    Applicant: SABIC Innovative Plastics IP B.V.
    Inventors: Karthik Balakrishnan, James A. Mahood, Adam Zerda
  • Patent number: 7381786
    Abstract: Disclosed herein is a process for preparing a polymer comprising structural units derived from polycyclic dihydroxy compound having Formula (I), wherein R1 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic functionality having 1 to 10 carbons, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; R2 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; and each R3 and R4, at each occurrence, can be the same or different and are independently at each occurrence an aliphatic functionality having 1 to 10 carbons or a cycloaliphatic functionality having 3 to 10 carbons, “n” is an integer having a value 0 to 4 and “m” is an integer ha
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 3, 2008
    Assignee: General Electric Company
    Inventors: Jan Henk Kamps, Jan-Pleun Lens, James A. Mahood, Arakali Srinivasarao Radhakrishna, T. Tilak Raj, Ravindra Vikram Singh
  • Patent number: 7358321
    Abstract: A copolycarbonate is discloses, comprising units of the formula (1) wherein 70 to 99.5 mole percent of the total number of R1 groups are derived from a dihydroxy compound of formula (2) wherein R2 and R3 are each independently a halogen or a C1-6 alkyl group, R4 is a methyl or a phenyl group, and c is independently 0 to 4; and 0.5 to 30 mole percent of the total number of R1 groups are derived from a dihydroxy compound of formula (3) HO—R5—OH??(3) wherein at least 60% of the R5 groups are aromatic, and the dihydroxy compound of formula (3) is not the same as the dihydroxy compound of formula (2), and wherein the copolycarbonate has a glass transition temperature of 250° C. or higher.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 15, 2008
    Assignee: General Electric Company
    Inventors: James A. Mahood, Emine Elif Gurel
  • Patent number: 7354986
    Abstract: A copolycarbonate of the formula wherein 5 to 75 mole percent of the total number of R1 groups is derived from a high Tg monomer of formula (2) wherein R2 and R3 are each independently a halogen or a C1-6 alkyl group, R4 is a methyl or phenyl, and c is 0 to 4; and 25 to 95 mole percent of the R1 groups are derived from a dihydroxy compound of formula HO—R5—OH, wherein at least 60% of the R5 groups are aromatic, and the dihydroxy compound of formula (3) is not the same as the high Tg monomer of formula (2), and wherein the copolycarbonate comprises at least 10% fewer carbonate linkages of formula (4) than would be theoretically obtained in a random copolymer made from the same ratio of the high Tg monomer of formula (2) and the dihydroxy compound of formula (3).
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: April 8, 2008
    Assignee: General Electric Company
    Inventors: James A. Mahood, Jon M. Malinoski
  • Patent number: 7326763
    Abstract: A polymer comprises structural units derived from a polycyclic dihydroxy compound of Formula (I) wherein R1 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic functionality having 1 to 10 carbons, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; R2 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; and R3 and R4 are independently at each occurrence a hydrogen, an aliphatic functionality having 1 to 10 carbons or a cycloaliphatic functionality having 3 to 10 carbons.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: February 5, 2008
    Assignee: General Electric Company
    Inventors: Jan Henk Kamps, Jan-Pleun Lens, James A. Mahood, Radhakrishna Arakali Srinivasarao, T. Tilak Raj, Ravindra Vikram Singh
  • Publication number: 20070260033
    Abstract: Disclosed herein is a process for preparing a polymer comprising structural units derived from polycyclic dihydroxy compound having Formula (I), wherein R1 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic functionality having 1 to 10 carbons, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; R2 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; and each R3 and R4, at each occurrence, can be the same or different and are independently at each occurrence an aliphatic functionality having 1 to 10 carbons or a cycloaliphatic functionality having 3 to 10 carbons, “n” is an integer having a value 0 to 4 and “m” is an integer h
    Type: Application
    Filed: March 29, 2007
    Publication date: November 8, 2007
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jan Kamps, Jan-Pleun Lens, James Mahood, Arakali Radhakrishna, T. Raj, Ravindra Singh
  • Publication number: 20070238846
    Abstract: Disclosed herein are polysiloxane-polycarbonate copolymer articles. In one embodiment, a ?th inch thick bar formed from the thermoplastic composition has a B-Y ratio of less than or equal to about 1.75. This article, which has a dimension that is greater than or equal to 1.5 cm, comprises the thermoplastic composition which comprises a polysiloxane-polycarbonate copolymer, wherein the copolymer comprises repeating diorganosiloxane units of formula (1): wherein each R is, independently, a C1-13 monovalent organic group; and E has an average value of 20 to 35.
    Type: Application
    Filed: April 10, 2006
    Publication date: October 11, 2007
    Inventors: Gary Davis, James Mahood, Matthew Pixton, Niles Rosenquist, James Silva, Joshua Stone
  • Publication number: 20070213498
    Abstract: A copolycarbonate of the formula wherein 5 to 50 mole percent of the total number of R1 groups is derived from a monomer of formula (2) wherein each Rf is independently at each occurrence a halogen atom, a hydrocarbon group having 1 to 10 carbons, or a halogen substituted hydrocarbon group having 1 to 10 carbons, and n is 0 to 4; and 50 to 95 mole percent of the R1 groups are derived from a dihydroxy compound of formula HO—R5—OH, wherein at least 60% of the R5 groups are aromatic, and the dihydroxy compound of formula (3) is not a compound of formula (2), and wherein the copolycarbonate comprises at least 10% fewer carbonate linkages of formula (4) than would be theoretically obtained in a random copolymer made from the same ratio of the monomer of formula (2) and the dihydroxy compound of formula (3).
    Type: Application
    Filed: March 10, 2006
    Publication date: September 13, 2007
    Inventor: James Mahood
  • Publication number: 20070155945
    Abstract: A polycarbonate such as aliphatic/aromatic polycarbonate comprises repeating structural carbonate units of the formula (H-1): in which Rh is a radical having the formula (H-2): wherein each of R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R25, R26, R27, and R28 is independently a hydrogen, a C1-C6 alkyl group, or a halogen substituted C1-C6 alkyl group. The polycarbonate, and a thermoplastic composition thereof, have improved thermal stability, cost-effectiveness, and exhibit improved manufacturability such as, for example, minimum cyclic carbonate formation and minimum amine acceptor requirement.
    Type: Application
    Filed: January 4, 2006
    Publication date: July 5, 2007
    Applicant: General Electric Company
    Inventors: Gary Davis, James Mahood, James Silva, Joshua Stone
  • Publication number: 20070123688
    Abstract: A copolycarbonate of the formula wherein 5 to 75 mole percent of the total number of R1 groups is derived from a high Tg monomer of formula (2) wherein R2 and R3 are each independently a halogen or a C1-6 alkyl group, R4 is a methyl or phenyl, and c is 0 to 4; and 25 to 95 mole percent of the R1 groups are derived from a dihydroxy compound of formula HO—R5—OH, wherein at least 60% of the R5 groups are aromatic, and the dihydroxy compound of formula (3) is not the same as the high Tg monomer of formula (2), and wherein the copolycarbonate comprises at least 10% fewer carbonate linkages of formula (4) than would be theoretically obtained in a random copolymer made from the same ratio of the high Tg monomer of formula (2) and the dihydroxy compound of formula (3).
    Type: Application
    Filed: November 30, 2005
    Publication date: May 31, 2007
    Inventors: James Mahood, Jon Malinoski
  • Publication number: 20070123686
    Abstract: A copolycarbonate is discloses, comprising units of the formula (1) wherein 70 to 99.5 mole percent of the total number of R1 groups are derived from a dihydroxy compound of formula (2) wherein R2 and R3 are each independently a halogen or a C1-6 alkyl group, R4 is a methyl or a phenyl group, and c is independently 0 to 4; and 0.5 to 30 mole percent of the total number of R1 groups are derived from a dihydroxy compound of formula (3) HO—R5—OH??(3) wherein at least 60% of the R5 groups are aromatic, and the dihydroxy compound of formula (3) is not the same as the dihydroxy compound of formula (2), and wherein the copolycarbonate has a glass transition temperature of 250° C. or higher.
    Type: Application
    Filed: November 29, 2005
    Publication date: May 31, 2007
    Inventors: James Mahood, Emine Gurel
  • Publication number: 20070123687
    Abstract: A copolycarbonate-polyester, comprising units of formula wherein at least 60 percent of the total number of R1 groups are divalent aromatic organic radicals and the balance thereof are divalent aliphatic or alicyclic radicals; units of formula wherein T is a C7-20 divalent alkyl aromatic radical or a C6-20 divalent aromatic radical, and D is a divalent C6-20 aromatic radical; and units of the formula wherein R2 and R3 are each independently a halogen or a C1-6 alkyl group, R4 is a methyl or phenyl group, each c is independently 0 to 4, and T is as described above.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 31, 2007
    Inventors: Karthik Balakrishnan, James Mahood, Adam Zerda
  • Publication number: 20070100113
    Abstract: A polycarbonate comprises structural units derived from a polycyclic dihydroxy compound of Formula (I) wherein R1 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic functionality having 1 to 10 carbons, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; R2 is selected from the group consisting of a cyano functionality, a nitro functionality, an aliphatic ester functionality having 2 to 10 carbons, a cycloaliphatic ester functionality having 4 to 10 carbons and an aromatic ester functionality having 4 to 10 carbons; and R3 and R4 are independently at each occurrence a hydrogen, an aliphatic functionality having 1 to 10 carbons or a cycloaliphatic functionality having 3 to 10 carbons.
    Type: Application
    Filed: October 28, 2005
    Publication date: May 3, 2007
    Inventors: Jan Kamps, Jan-Pleun Lens, James Mahood, A.S. Radhakrishna, T. Raj, Ravindra Singh
  • Publication number: 20060084822
    Abstract: A method for preparing an aliphatic chloroformate comprising, introducing a mixture of at least one aliphatic hydroxyl compound, phosgene, at least one solvent, and optionally at least one organic base into a flow reactor to obtain a unidirectional flowing reaction mixture. The at least one aliphatic hydroxyl compound comprises at least one aliphatic hydroxyl group. The unidirectional flowing reaction mixture is maintained at a temperature between about 0° C. and about 60° C. to produce a single product stream comprising an aliphatic chloroformate.
    Type: Application
    Filed: October 19, 2004
    Publication date: April 20, 2006
    Inventors: Gary Davis, Joshua Stone, James Silva, James Mahood, David Dardaris
  • Patent number: 6492486
    Abstract: Copolymers of BPA, BPT-1 and BPT-2, can be used as a modifier to enhance the thermal properties of a BPA polymer. A single copolymer modifier can be used in differing amounts to produce a product with desired thermal properties. Thus, polycarbonate can be made by combining a bisphenol A polycarbonate and a BPA/BPT-1/BPT-2 copolymer modifier, and mixing the combined materials to form a blend. By adjusting the relative amounts and the properties of the bisphenol A polycarbonate and BPA/BPT-1/BPT-2 copolymer, the glass transition temperature and the toughness of the blend can be selected. Suitable BPA/BPT-1/BPT-2 copolymers contain BPT-1 and BPT-2 in a ratio, BPT-1/BPT-2, in the range of 70/30 to 10/90, preferably less than or equal to 50/50, for example around 30/70.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: December 10, 2002
    Assignee: General Electric Company
    Inventor: James Mahood