Patents by Inventor James A. McFarlane

James A. McFarlane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8342283
    Abstract: A pneumatic vehicle is provided with a chassis, wheels, a compressed air tank, a heat exchanger to heat the compressed air, and an air motor driven by the heated air and connected to at least one wheel. A pneumatic vehicle is provided with a chassis, wheels, a compressed air tank, and an air motor driven by the compressed air and connected to a wheel. The vehicle also has a ventilation system for the passenger compartment, a heat exchanger, and a restrictive solenoid valve for directing ventilation system air to the heat exchanger. A pneumatic vehicle is provided with a chassis, wheels, an aluminum compressed air tank, a carbon filament reinforced plastic layer over the tank, a fiberglass and aramid-fiber layer over the carbon filament reinforced plastic layer, and an air motor driven by the compressed air and connected to at least one wheel.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 1, 2013
    Assignee: Deakin University
    Inventors: Bernard Frank Rolfe, Timothy Ian De Souza, Gregory Ryan Pitts, Stuart James McFarlane Hanafin, Steven Lewis Anthony Agius, Benjamin Paul Adamson, Michael Pio Gordon Pereira, Timothy John Black, Christopher James Hurren, Noel Egan Miller
  • Patent number: 8317257
    Abstract: A pneumatic vehicle is provided with a first and second sub-assembly. The first sub-assembly has a chassis supporting an air tank. The second sub-assembly has part of the vehicle body and is bonded to the first-sub-assembly using a structural adhesive. Another pneumatic vehicle is provided with a first and second sub-assembly. The first sub-assembly has a chassis, air tank, part of the vehicle body, a pair of B-pillars, and a pair of rear rails. The second sub-assembly has a part of the vehicle body, a pair of A-pillars, and a pair of roof rails. A vehicle seat is provided with a seat base and upright seat back providing a seating area. A bladder located in the central region of the seating area inflates to provide two bucket seats, and deflates to provide a bench seat. The vehicle seat also has inflatable inserts to provide cushioning.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: November 27, 2012
    Assignee: Deakin University
    Inventors: Bernard Frank Rolfe, Timothy Ian De Souza, Gregory Ryan Pitts, Stuart James McFarlane Hanafin, Steven Lewis Anthony Agius, Benjamin Paul Adamson, Michael Pio Gordon Pereira, Timothy John Black, Christopher James Hurren, Noel Egan Miller
  • Patent number: 8313121
    Abstract: A pneumatic vehicle is provided with an elongate compressed air tank, a chassis assembled with the tank oriented longitudinally in the chassis where the tank is a load-bearing structural chassis member, wheels connected to the chassis, and a powertrain driven by the compressed air and operably connected to one of the wheels. A chassis for a pneumatic vehicle is provided with an elongate compressed air tank, a first series of side support members connected laterally to the air tank, a second series of side support members connected laterally to the air tank, a first side panel connected to the first series of side support members, a second side panel connected to the second series of side support members, wheels connected to the side panels, and a powertrain driven by the air in the compressed air tank and connected to one of the wheels.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: November 20, 2012
    Assignee: Deakin University
    Inventors: Bernard Frank Rolfe, Timothy Ian De Souza, Gregory Ryan Pitts, Stuart James McFarlane Hanafin, Steven Lewis Anthony Agius, Benjamin Paul Adamson, Michael Pio Gordon Pereira, Timothy John Black, Christopher James Hurren, Noel Egan Miller
  • Publication number: 20110087129
    Abstract: Apparatus for performing impedance measurements on a subject. The apparatus includes a first processing system for determining an impedance measurement procedure and determining instructions corresponding to the measurement procedure. A second processing system is provided for receiving the instructions, using the instructions to generate control signals, with the control signals being used to apply one or more signals to the subject. The second processing system then receives first data indicative of the one or more signals applied to the subject, second data indicative of one or more signals measured across the subject and performs at least preliminary processing of the first and second data to thereby allow impedance values to be determined.
    Type: Application
    Filed: June 30, 2006
    Publication date: April 14, 2011
    Applicant: Impedimed Limited
    Inventors: Scott Chetham, Andrew William Ward, James Mcfarlane Kennedy
  • Patent number: 7878026
    Abstract: A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 1, 2011
    Assignee: James Hardie Technology Limited
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20100192808
    Abstract: A building product incorporating synthetic microspheres having a low alkali metal oxide content is provided. The synthetic microspheres are substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The building product can have a cementitious matrix such as a fiber cement product. The synthetic microspheres can be incorporated as a low density additive and/or a filler for the building product and/or the like.
    Type: Application
    Filed: December 30, 2009
    Publication date: August 5, 2010
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20100078253
    Abstract: A pneumatic vehicle is provided with a chassis, wheels, a compressed air tank, a heat exchanger to heat the compressed air, and an air motor driven by the heated air and connected to at least one wheel. A pneumatic vehicle is provided with a chassis, wheels, a compressed air tank, and an air motor driven by the compressed air and connected to a wheel. The vehicle also has a ventilation system for the passenger compartment, a heat exchanger, and a restrictive solenoid valve for directing ventilation system air to the heat exchanger. A pneumatic vehicle is provided with a chassis, wheels, an aluminum compressed air tank, a carbon filament reinforced plastic layer over the tank, a fiberglass and aramid-fiber layer over the carbon filament reinforced plastic layer, and an air motor driven by the compressed air and connected to at least one wheel.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Inventors: Bernard Frank Rolfe, Timothy Ian De Souza, Gregory Ryan Pitts, Stuart James McFarlane Hanafin, Steven Lewis Anthony Agius, Benjamin Paul Adamson, Michael Pio Gordon Pereira, Timothy John Black, Christopher James Hurren, Noel Egan Miller
  • Publication number: 20100078245
    Abstract: A pneumatic vehicle is provided with an elongate compressed air tank, a chassis assembled with the tank oriented longitudinally in the chassis where the tank is a load-bearing structural chassis member, wheels connected to the chassis, and a powertrain driven by the compressed air and operably connected to one of the wheels. A chassis for a pneumatic vehicle is provided with an elongate compressed air tank, a first series of side support members connected laterally to the air tank, a second series of side support members connected laterally to the air tank, a first side panel connected to the first series of side support members, a second side panel connected to the second series of side support members, wheels connected to the side panels, and a powertrain driven by the air in the compressed air tank and connected to one of the wheels.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Inventors: Bernard Frank Rolfe, Timothy Ian de Souza, Gregory Ryan Pitts, Stuart James McFarlane Hanafin, Steven Lewis Anthony Agius, Benjamin Paul Adamson, Michael Pio Gordon Pereira, Timothy John Black, Christopher James Hurren, Noel Egan Miller
  • Publication number: 20100078254
    Abstract: A pneumatic vehicle is provided with a first and second sub-assembly. The first sub-assembly has a chassis supporting an air tank. The second sub-assembly has part of the vehicle body and is bonded to the first-sub-assembly using a structural adhesive. Another pneumatic vehicle is provided with a first and second sub-assembly. The first sub-assembly has a chassis, air tank, part of the vehicle body, a pair of B-pillars, and a pair of rear rails. The second sub-assembly has a part of the vehicle body, a pair of A-pillars, and a pair of roof rails. A vehicle seat is provided with a seat base and upright seat back providing a seating area. A bladder located in the central region of the seating area inflates to provide two bucket seats, and deflates to provide a bench seat. The vehicle seat also has inflatable inserts to provide cushioning.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Inventors: Bernard Frank Rolfe, Timothy Ian de Souza, Gregory Ryan Pitts, Stuart James McFarlane Hanafin, Steven Lewis Anthony Agius, Benjamin Paul Adamson, Michael Pio Gordon Pereira, Timothy John Black, Christopher James Hurren, Noel Egan Miller
  • Patent number: 7666505
    Abstract: A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: February 23, 2010
    Assignee: James Hardie Technology Limited
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Patent number: 7651563
    Abstract: A building product incorporating synthetic microspheres having a low alkali metal oxide content is provided. The synthetic microspheres are substantially chemically inert and thus a suitable replacement for cenospheres derived from coal combustion, particularly in caustic environments such as cementitious mixtures. The building product can have a cementitious matrix such as a fiber cement product. The synthetic microspheres can be incorporated as a low density additive and/or a filler for the building product and/or the like.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: January 26, 2010
    Assignee: James Hardie Technology Limited
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20080305027
    Abstract: This invention relates to the preparation, functionalisation and use of a novel nano structured silicate, generally a calcium silicate which may be hydrated. It also relates to novel methods of producing nano structured silicates. The novel nano-structured silicate material comprises a calcium silicate in the form of platelets of about 5-10 nm thick and about 50-500 nm wide or wider stacked together in a poorly ordered framework type structure as illustrated in FIG. 1. The novel material can be prepared by reacting a calcium ion containing solution with a silicate containing solution under controlled conditions and then allowing the calcium silicate to age. The novel silicate has pores of a high volume and which are readily accessible. This provides a high oil absorption capacity and high surface area. Novel nano-structured silicate materials are produced by the invention having an oil absorption capacity up to 700 g.oil.100 g?1 silicate and a surface area up to 600 m2g?1.
    Type: Application
    Filed: January 17, 2006
    Publication date: December 11, 2008
    Inventors: James Howard Johnston, Andrew James McFarlane, Thomas Borrmann
  • Publication number: 20080096018
    Abstract: A low density material and a method for preparing a low-density material and precursor for forming a low-density material are provided. An aqueous mixture of inorganic primary component and a blowing agent is formed, the mixture is dried and optionally ground to form an expandable precursor. Such a precursor is then fired with activation of the blowing agent being controlled such that it is activated within a predetermined optimal temperature range. The firing conditions are also controlled to provide a low density sphere containing a heterogeneous sphere wall structure comprising a combination of amorphous glass and a crystalline phase or gas phase or both.
    Type: Application
    Filed: December 8, 2006
    Publication date: April 24, 2008
    Applicant: JAMES HARDIE INTERNATIONAL FINANCE B.V.
    Inventors: Huagang Zhang, Hamid Hojaji, Shannon Labernik, David Melmeth, Thinh Pham, James McFarlane
  • Publication number: 20080000499
    Abstract: A system and method for cleaning a contactor device is presented. The cleaning system includes an automated testing handler and a handler controller for controlling the operation of the handler and facilitating user interaction with the handler. The handler further includes a contactor having a plurality of pins for establishing an electrical connection with one or more input devices. The handler is configured to house one or more input devices and one or more surrogate cleaning devices. The surrogate cleaning devices are configured to clean the pins of the contactor. A pick and place mechanism positioned in the handler is configured to transport both the input devices and the surrogate cleaning devices to the contactor.
    Type: Application
    Filed: December 15, 2006
    Publication date: January 3, 2008
    Inventors: James McFarlane, Enzo Bertaggia, Craig Gadd
  • Publication number: 20040081827
    Abstract: A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
    Type: Application
    Filed: August 25, 2003
    Publication date: April 29, 2004
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20040079260
    Abstract: A building product incorporating synthetic microspheres having a low alkali metal oxide content is provided. The synthetic microspheres are substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The building product can have a cementitious matrix such as a fiber cement product. The synthetic microspheres can be incorporated as a low density additive and/or a filler for the building product and/or the like.
    Type: Application
    Filed: August 25, 2003
    Publication date: April 29, 2004
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Publication number: 20040080063
    Abstract: A synthetic microsphere having a low alkali metal oxide content and methods of forming the microsphere and its components are provided. The synthetic microsphere is substantially chemically inert and thus a suitable replacement for natural cenospheres, particularly in caustic environments such as cementitious mixtures. The synthetic microsphere can be made from an agglomerate precursor that includes an aluminosilicate material, such as fly ash, a blowing agent such as sugar, carbon black, and silicon carbide, and a binding agent. The synthetic microsphere is produced when the precursor is fired at a pre-determined temperature profile so as to form either solid or hollow synthetic microspheres depending on the processing conditions and/or components used.
    Type: Application
    Filed: August 25, 2003
    Publication date: April 29, 2004
    Inventors: Amlan Datta, Hamid Hojaji, David L. Melmeth, James A. McFarlane, Thinh Pham, Noel E. Thompson, Huagang Zhang
  • Patent number: D441372
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: May 1, 2001
    Assignee: Morf Products Ltd.
    Inventors: Robert James McFarlane, Ann Jane Wilson
  • Patent number: D447487
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: September 4, 2001
    Assignee: Morf Products Ltd.
    Inventors: Robert James McFarlane, Ann Jane Wilson