Patents by Inventor James A. Mennell

James A. Mennell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139707
    Abstract: Biogenic activated carbon compositions disclosed herein comprise at least 55 wt % carbon, some of which may be present as graphene, and have high surface areas, such as Iodine Numbers of greater than 2000. Some embodiments provide biogenic activated carbon that is responsive to a magnetic field. A continuous process for producing biogenic activated carbon comprises countercurrently contacting, by mechanical means, a feedstock with a vapor stream comprising an activation agent including water and/or carbon dioxide; removing vapor from the reaction zone; recycling at least some of the separated vapor stream, or a thermally treated form thereof, to an inlet of the reaction zone(s) and/or to the feedstock; and recovering solids from the reaction zone(s) as biogenic activated carbon. Methods of using the biogenic activated carbon are disclosed.
    Type: Application
    Filed: December 18, 2023
    Publication date: May 2, 2024
    Inventors: James A. Mennell, Daniel J. Despen
  • Publication number: 20240132795
    Abstract: This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 25, 2024
    Inventors: Daniel J. Despen, James A. Mennell, Steve Filips
  • Publication number: 20240130308
    Abstract: Some variations provide a biomedia composition comprising: from 50 wt % to 75 wt % total carbon, on a dry basis, according to ASTM D5373, wherein the total carbon is renewable according to ASTM D6866 (14C/12C isotopic ratio); from 20 wt % to 40 wt % oxygen, on a dry basis, according ASTM D5373; from 3 wt % to 10 wt % hydrogen, on a dry basis, according to ASTM D5373; and from 0.1 wt % to 2 wt % nitrogen, on a dry basis, according to ASTM D5373, wherein the biomedia composition is characterized by volatile-matter content from 50 wt % to 75 wt %, according to ASTM D3175; wherein the biomedia composition is characterized by ash content from 1 wt % to 25 wt %, according to ASTM D3174; and wherein the biomedia composition is characterized by moisture content from 0 to 75 wt %, according to ASTM D3173. Processes are also described to make and use the biomedia compositions.
    Type: Application
    Filed: October 22, 2023
    Publication date: April 25, 2024
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Patent number: 11965139
    Abstract: This invention provides processes and systems for converting biomass into high carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: April 23, 2024
    Assignee: Carbon Technology Holdings, LLC
    Inventors: James A. Mennell, Daniel J. Despen
  • Patent number: 11959038
    Abstract: This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: April 16, 2024
    Assignee: CARBON TECHNOLOGY HOLDINGS, LLC
    Inventors: Daniel J. Despen, James A. Mennell, Steve Filips
  • Publication number: 20240101906
    Abstract: In some variations, the invention provides a biocarbon composition comprising a low fixed carbon material with a fixed carbon concentration from 20 wt % to 55 wt %; a high fixed carbon material with a fixed carbon concentration from 50 wt % to 100 wt % (and higher than the fixed carbon concentration of the low fixed carbon material; from 0 to 30 wt % moisture; from 0 to 15 wt % ash; and from 0 to 20 wt % of one or more additives (such as a binder).
    Type: Application
    Filed: July 21, 2023
    Publication date: March 28, 2024
    Inventors: James A. Mennell, Dustin Slack, Daren Daugaard
  • Patent number: 11932814
    Abstract: In some variations, the invention provides a biocarbon composition comprising a low fixed carbon material with a fixed carbon concentration from 20 wt % to 55 wt %; a high fixed carbon material with a fixed carbon concentration from 50 wt % to 100 wt % (and higher than the fixed carbon concentration of the low fixed carbon material; from 0 to 30 wt % moisture; from 0 to 15 wt % ash; and from 0 to 20 wt % of one or more additives (such as a binder).
    Type: Grant
    Filed: April 27, 2022
    Date of Patent: March 19, 2024
    Assignee: CARBON TECHNOLOGY HOLDINGS, LLC
    Inventors: James A. Mennell, Dustin Slack, Daren Daugaard
  • Publication number: 20240082813
    Abstract: Biogenic activated carbon compositions disclosed herein comprise at least 55 wt % carbon, some of which may be present as graphene, and have high surface areas, such as Iodine Numbers of greater than 2000. Some embodiments provide biogenic activated carbon that is responsive to a magnetic field. A continuous process for producing biogenic activated carbon comprises countercurrently contacting, by mechanical means, a feedstock with a vapor stream comprising an activation agent including water and/or carbon dioxide; removing vapor from the reaction zone; recycling at least some of the separated vapor stream, or a thermally treated form thereof, to an inlet of the reaction zone(s) and/or to the feedstock; and recovering solids from the reaction zone(s) as biogenic activated carbon. Methods of using the biogenic activated carbon are disclosed.
    Type: Application
    Filed: August 21, 2023
    Publication date: March 14, 2024
    Inventors: James A. Mennell, Daniel J. Despen
  • Patent number: 11891582
    Abstract: This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: February 6, 2024
    Assignee: CARBON TECHNOLOGY HOLDINGS, LLC
    Inventors: Daniel J. Despen, James A. Mennell, Steve Filips
  • Patent number: 11879107
    Abstract: This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 23, 2024
    Assignee: CARBON TECHNOLOGY HOLDINGS, LLC
    Inventors: Daniel J. Despen, James A. Mennell, Steve Filips
  • Patent number: 11851723
    Abstract: Some variations provide a carbon-negative carbon product that is characterized by a carbon intensity less than 0 kg CO2e per metric ton of the carbon-negative carbon product, wherein the carbon-negative carbon product contains at least about 50 wt % carbon. In some embodiments, the carbon intensity is less than ?500 kg CO2e per metric ton of the carbon-negative carbon product. Other variations provide a carbon-negative metal product (e.g., a steel product) that is characterized by a carbon intensity less than 0 kg CO2e per metric ton of the carbon-negative metal product, wherein the metal product contains from 50 wt % to 100 wt % of one or more metals and optionally one or more alloying elements. In some embodiments, the carbon-negative metal product is characterized by a carbon intensity less than ?200 kg CO2e per metric ton of the carbon-negative metal product. The carbon-negative metal product can contain a wide variety of metals.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: December 26, 2023
    Assignee: CARBON TECHNOLOGY HOLDINGS, LLC
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20230407421
    Abstract: Some variations provide a carbon-negative carbon product that is characterized by a carbon intensity less than 0 kg CO2e per metric ton of the carbon-negative carbon product, wherein the carbon-negative carbon product contains at least about 50 wt % carbon. In some embodiments, the carbon intensity is less than ?500 kg CO2e per metric ton of the carbon-negative carbon product. Other variations provide a carbon-negative metal product (e.g., a steel product) that is characterized by a carbon intensity less than 0 kg CO2e per metric ton of the carbon-negative metal product, wherein the metal product contains from 50 wt % to 100 wt % of one or more metals and optionally one or more alloying elements. In some embodiments, the carbon-negative metal product is characterized by a carbon intensity less than ?200 kg CO2e per metric ton of the carbon-negative metal product. The carbon-negative metal product can contain a wide variety of metals.
    Type: Application
    Filed: July 31, 2023
    Publication date: December 21, 2023
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20230323229
    Abstract: A process for producing biocoke is provided, comprising: providing a heated biogas stream comprising carbon-containing vapors; providing a kinetic interface media, in solid form; introducing the kinetic interface media and the heated biogas stream to a kinetic interface reactor, operated to convert at least some of the carbon-containing vapors to biocoke; removing the solid biocoke-containing kinetic interface media from the kinetic interface reactor; and recovering the solid biocoke-containing kinetic interface media.
    Type: Application
    Filed: March 14, 2023
    Publication date: October 12, 2023
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20230323230
    Abstract: A process for producing biocoke is provided, comprising: providing a heated biogas stream comprising carbon-containing vapors; providing a kinetic interface media, in solid form; introducing the kinetic interface media and the heated biogas stream to a kinetic interface reactor, operated to convert at least some of the carbon-containing vapors to biocoke; removing the solid biocoke-containing kinetic interface media from the kinetic interface reactor; and recovering the solid biocoke-containing kinetic interface media.
    Type: Application
    Filed: March 14, 2023
    Publication date: October 12, 2023
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20230303939
    Abstract: This invention provides processes and systems for converting biomass into high carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Application
    Filed: May 30, 2023
    Publication date: September 28, 2023
    Inventors: James A. Mennell, Daniel J. Despen
  • Patent number: 11753698
    Abstract: Some variations provide a composition for reducing a metal ore, the composition comprising a carbon-metal ore particulate, wherein the carbon-metal ore particulate comprises at least about 0.1 wt % to at most about 50 wt % fixed carbon on a moisture-free and ash-free basis, and wherein the carbon is at least 50% renewable carbon as determined from a measurement of the 14C/12C isotopic ratio. Some variations provide a process for reducing a metal ore, comprising: providing a biomass feedstock; pyrolyzing the feedstock to generate a biogenic reagent comprising carbon and a pyrolysis off-gas comprising hydrogen or carbon monoxide; obtaining a metal ore comprising a metal oxide; combining the carbon with the metal ore, to generate a carbon-metal ore particulate; optionally pelletizing the carbon-metal ore particulate; and utilizing the pyrolysis off-gas to chemically reduce the metal oxide to elemental metal, such as iron.
    Type: Grant
    Filed: September 25, 2021
    Date of Patent: September 12, 2023
    Assignee: Carbon Technology Holdings, LLC
    Inventors: James A. Mennell, Daren Daugaard, Dustin Slack
  • Publication number: 20230234024
    Abstract: Highly mesoporous activated carbon products are disclosed with mesoporosities characterized by mesopore volumes of 0.7 to 1.0 cubic centimeters per gram or greater. Also disclosed are activated carbon products characterized by a Molasses Number of about 500 to 1000 or greater. Also disclosed are activated carbon products characterized by a Tannin Value of about 100 to 35 or less. The activated carbon products may be further characterized by total pore volumes of at least 0.85 cubic centimeters per gram and BET surface areas of at least about 800 square meters per gram. The activated carbon product may be derived from a renewable feedstock.
    Type: Application
    Filed: August 31, 2022
    Publication date: July 27, 2023
    Inventors: Daniel J. Despen, James A. Mennell, David Reamer
  • Patent number: 11674101
    Abstract: This invention provides processes and systems for converting biomass into high carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt %, 80 wt %, 90 wt %, 95 wt %, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: June 13, 2023
    Assignee: Carbon Technology Holdings, LLC
    Inventors: James A. Mennell, Daniel J. Despen
  • Publication number: 20230159840
    Abstract: This invention provides processes and systems for converting biomass into high-carbon biogenic reagents that are suitable for a variety of commercial applications. Some embodiments employ pyrolysis in the presence of an inert gas to generate hot pyrolyzed solids, condensable vapors, and non-condensable gases, followed by separation of vapors and gases, and cooling of the hot pyrolyzed solids in the presence of the inert gas. Additives may be introduced during processing or combined with the reagent, or both. The biogenic reagent may include at least 70 wt%, 80 wt%, 90 wt%, 95 wt%, or more total carbon on a dry basis. The biogenic reagent may have an energy content of at least 12,000 Btu/lb, 13,000 Btu/lb, 14,000 Btu/lb, or 14,500 Btu/lb on a dry basis. The biogenic reagent may be formed into fine powders, or structural objects. The structural objects may have a structure and/or strength that derive from the feedstock, heat rate, and additives.
    Type: Application
    Filed: January 24, 2023
    Publication date: May 25, 2023
    Inventors: Daniel J. Despen, James A. Mennell, Steve Filips
  • Publication number: 20230151280
    Abstract: In some variations, the disclosure provides a renewable biocarbon composition comprising from 50 wt % to 99 wt % total carbon, wherein the biocarbon composition is characterized by a base-acid ratio selected from 0.1 to 10, an iron-calcium ratio selected from 0.05 to 5, iron-plus-calcium parameter selected from 5 to 50 wt %, a slagging factor selected from 0.001 to 1, and/or a fouling factor or modified fouling factor selected from 0.1 to 10. Some variations provide a process comprising: providing a biomass feedstock; pyrolyzing the biomass feedstock to generate an intermediate biocarbon stream; washing or treating the intermediate biocarbon stream with an acid, a base, a salt, a metal, H2, H2O, CO, CO2, or a combination thereof, and/or introducing an additive in the process, to adjust a base-acid ratio or other compositional parameter; and recovering a biocarbon composition comprising from 50 wt % to 99 wt % total carbon and optimized for a compositional parameter.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 18, 2023
    Inventors: James A. Mennell, Dustin Slack, Daren Daugaard