Patents by Inventor James A. Tornello

James A. Tornello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10262866
    Abstract: A chemical mechanical planarization for indium phosphide material is provided in which at least one opening is formed within a dielectric layer located on a substrate. An indium phosphide material is epitaxially grown within the at least one opening of the dielectric layer which extends above a topmost surface of the dielectric layer. The indium phosphide material is planarized using at least one slurry composition to form coplanar surfaces of the indium phosphide material and the dielectric layer, where a slurry composition of the at least one slurry composition polishes the indium phosphide material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator and an oxidizer, the at least one pH modulator including an acidic pH modulator, but lacks a basic pH modulator, and where the oxidizer suppresses generation of phosphine gas.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: April 16, 2019
    Assignees: International Business Machines Corporation, JSR CORPORATION
    Inventors: Henry A. Beveridge, Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Publication number: 20180166292
    Abstract: A chemical mechanical planarization for indium phosphide material is provided in which at least one opening is formed within a dielectric layer located on a substrate. An indium phosphide material is epitaxially grown within the at least one opening of the dielectric layer which extends above a topmost surface of the dielectric layer. The indium phosphide material is planarized using at least one slurry composition to form coplanar surfaces of the indium phosphide material and the dielectric layer, where a slurry composition of the at least one slurry composition polishes the indium phosphide material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator and an oxidizer, the at least one pH modulator including an acidic pH modulator, but lacks a basic pH modulator, and where the oxidizer suppresses generation of phosphine gas.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Inventors: Henry A. Beveridge, Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Patent number: 9916985
    Abstract: A chemical mechanical planarization for indium phosphide material is provided in which at least one opening is formed within a dielectric layer located on a substrate. An indium phosphide material is epitaxially grown within the at least one opening of the dielectric layer which extends above a topmost surface of the dielectric layer. The indium phosphide material is planarized using at least one slurry composition to form coplanar surfaces of the indium phosphide material and the dielectric layer, where a slurry composition of the at least one slurry composition polishes the indium phosphide material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator and an oxidizer, the at least one pH modulator including an acidic pH modulator, but lacks a basic pH modulator, and where the oxidizer suppresses generation of phosphine gas.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 13, 2018
    Assignees: International Business Machines Corporation, JSR CORPORATION
    Inventors: Henry A. Beveridge, Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Patent number: 9890300
    Abstract: Method for chemical mechanical planarization is provided, which includes: forming a dielectric layer containing at least one opening, the dielectric layer is located on a substrate; epitaxially growing a germanium material within the at least one opening of the dielectric layer, the germanium material extending above a topmost surface of the dielectric layer; and planarizing the germanium material using at least one slurry composition to form coplanar surfaces of the germanium material and the dielectric layer, where a slurry composition of at least one slurry composition polishes the germanium material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator, and an oxidizer, the at least one pH modulator including an acidic pH modulator, and lacking a basic pH modulator.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: February 13, 2018
    Assignees: International Business Machines Corporation, JSR Corporation
    Inventors: Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Publication number: 20170218229
    Abstract: Method for chemical mechanical planarization is provided, which includes: forming a dielectric layer containing at least one opening, the dielectric layer is located on a substrate; epitaxially growing a germanium material within the at least one opening of the dielectric layer, the germanium material extending above a topmost surface of the dielectric layer; and planarizing the germanium material using at least one slurry composition to form coplanar surfaces of the germanium material and the dielectric layer, where a slurry composition of at least one slurry composition polishes the germanium material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator, and an oxidizer, the at least one pH modulator including an acidic pH modulator, and lacking a basic pH modulator.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Inventors: Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Patent number: 9646841
    Abstract: A chemical mechanical planarization for a Group III arsenide material is provided in which at least one opening is formed within a dielectric layer located on a substrate. A Group III arsenide material is epitaxially grown within the at least one opening of the dielectric layer which extends above a topmost surface of the dielectric layer. The Group III arsenide material is planarized using at least one slurry composition to form coplanar surfaces of the Group III arsenide material and the dielectric layer, where a slurry composition of the at least one slurry composition polishes the Group III arsenide material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator and an oxidizer, the at least one pH modulator including an acidic pH modulator, but lacks a basic pH modulator, and where the oxidizer suppresses generation of an arsine gas.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: May 9, 2017
    Assignees: International Business Machines Corporation, JSR Corporation
    Inventors: Henry A. Beveridge, Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Patent number: 9646842
    Abstract: Method for chemical mechanical planarization is provided, which includes: forming a dielectric layer containing at least one opening, the dielectric layer is located on a substrate; epitaxially growing a germanium material within the at least one opening of the dielectric layer, the germanium material extending above a topmost surface of the dielectric layer; and planarizing the germanium material using at least one slurry composition to form coplanar surfaces of the germanium material and the dielectric layer, where a slurry composition of at least one slurry composition polishes the germanium material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator, and an oxidizer, the at least one pH modulator including an acidic pH modulator, and lacking a basic pH modulator.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: May 9, 2017
    Assignees: International Business Machines Corporation, JSR CORPORATION
    Inventors: Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Publication number: 20170110333
    Abstract: A chemical mechanical planarization for a Group III arsenide material is provided in which at least one opening is formed within a dielectric layer located on a substrate. A Group III arsenide material is epitaxially grown within the at least one opening of the dielectric layer which extends above a topmost surface of the dielectric layer. The Group III arsenide material is planarized using at least one slurry composition to form coplanar surfaces of the Group III arsenide material and the dielectric layer, where a slurry composition of the at least one slurry composition polishes the Group III arsenide material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator and an oxidizer, the at least one pH modulator including an acidic pH modulator, but lacks a basic pH modulator, and where the oxidizer suppresses generation of an arsine gas.
    Type: Application
    Filed: May 20, 2016
    Publication date: April 20, 2017
    Inventors: Henry A. Beveridge, Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Publication number: 20170110332
    Abstract: A chemical mechanical planarization for indium phosphide material is provided in which at least one opening is formed within a dielectric layer located on a substrate. An indium phosphide material is epitaxially grown within the at least one opening of the dielectric layer which extends above a topmost surface of the dielectric layer. The indium phosphide material is planarized using at least one slurry composition to form coplanar surfaces of the indium phosphide material and the dielectric layer, where a slurry composition of the at least one slurry composition polishes the indium phosphide material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator and an oxidizer, the at least one pH modulator including an acidic pH modulator, but lacks a basic pH modulator, and where the oxidizer suppresses generation of phosphine gas.
    Type: Application
    Filed: May 20, 2016
    Publication date: April 20, 2017
    Inventors: Henry A. Beveridge, Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Publication number: 20170110334
    Abstract: Method for chemical mechanical planarization is provided, which includes: forming a dielectric layer containing at least one opening, the dielectric layer is located on a substrate; epitaxially growing a germanium material within the at least one opening of the dielectric layer, the germanium material extending above a topmost surface of the dielectric layer; and planarizing the germanium material using at least one slurry composition to form coplanar surfaces of the germanium material and the dielectric layer, where a slurry composition of at least one slurry composition polishes the germanium material selective to the topmost surface of the dielectric layer, and includes an abrasive, at least one pH modulator, and an oxidizer, the at least one pH modulator including an acidic pH modulator, and lacking a basic pH modulator.
    Type: Application
    Filed: May 20, 2016
    Publication date: April 20, 2017
    Inventors: Tatsuyoshi Kawamoto, Mahadevaiyer Krishnan, Yohei Oishi, Dinesh Kumar Penigalapati, Rachel S. Steiner, James A. Tornello, Tatsuya Yamanaka
  • Patent number: 8263497
    Abstract: An assembly including a main wafer having a body with a front side and a back side and a plurality of blind electrical vias terminating above the back side, and a handler wafer, is obtained. A step includes exposing the blind electrical vias to various heights on the back side. Another step involves applying a first chemical mechanical polish process to the back side, to open any of the surrounding insulator adjacent the end regions of the cores remaining after the exposing step, and to co-planarize the via conductive cores, the surrounding insulator adjacent the side regions of the cores, and the body of the main wafer. Further steps include etching the back side to produce a uniform standoff height of each of the vias across the back side; depositing a dielectric across the back side; and applying a second chemical mechanical polish process to the back side.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: September 11, 2012
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, John M. Cotte, Michael F. Lofaro, Edmund J. Sprogis, James A. Tornello, Cornelia K. Tsang
  • Patent number: 7955160
    Abstract: A glass mold polishing structure and method. The method includes providing a polishing tool comprising mounting plate, a chuck plate over and mechanically attached to the mounting plate, and a pad structure over and mechanically attached to the chuck plate. A retaining structure is attached the chuck plate. A glass mold comprising a plurality of cavities is placed on the pad structure and within a perimeter formed by the retaining structure. A vacuum device is attached to the chuck plate. The vacuum device is activated such that a vacuum is formed and mechanically attaches the glass mold to the pad structure. The polishing tool comprising the glass mold mechanically attached to the pad structure is placed over and in contact with the polishing pad. The polishing tool comprising the glass mold is rotated. The glass mold is polished as a result of the rotation.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Michael A. Cobb, Dinesh R. Koli, Michael F. Lofaro, Dennis G. Manzer, Paraneetha Poloju, James A. Tornello
  • Publication number: 20100178766
    Abstract: An assembly including a main wafer having a body with a front side and a back side, and a handler wafer, is obtained. The main wafer has a plurality of blind electrical vias terminating above the back side. The blind electrical vias have conductive cores with surrounding insulator adjacent side and end regions of the cores. The handler wafer is secured to the front side of the body of the main wafer. An additional step includes exposing the blind electrical vias on the back side. The blind electrical vias are exposed to various heights across the back side. Another step involves applying a first chemical mechanical polish process to the back side, to open any of the surrounding insulator adjacent the end regions of the cores remaining after the exposing step, and to co-planarize the via conductive cores, the surrounding insulator adjacent the side regions of the cores, and the body of the main wafer.
    Type: Application
    Filed: January 13, 2009
    Publication date: July 15, 2010
    Applicant: International Business Machines Corporation
    Inventors: Paul S. Andry, John M. Cotte, Michael F. Lofaro, Edmund J. Sprogis, James A. Tornello, Cornelia K. Tsang
  • Publication number: 20090305616
    Abstract: A glass mold polishing structure and method. The method includes providing a polishing tool comprising mounting plate, a chuck plate over and mechanically attached to the mounting plate, and a pad structure over and mechanically attached to the chuck plate. A retaining structure is attached the chuck plate. A glass mold comprising a plurality of cavities is placed on the pad structure and within a perimeter formed by the retaining structure. A vacuum device is attached to the chuck plate. The vacuum device is activated such that a vacuum is formed and mechanically attaches the glass mold to the pad structure. The polishing tool comprising the glass mold mechanically attached to the pad structure is placed over and in contact with the polishing pad. The polishing tool comprising the glass mold is rotated. The glass mold is polished as a result of the rotation.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 10, 2009
    Inventors: Michael A. Cobb, Dinesh R. Koli, Michael F. Lofaro, Dennis G. Manzer, Praneetha Poloju, James A. Tornello
  • Patent number: 7581314
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: September 1, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John M. Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John H. Magerlein, Kenneth Stein, Richard P. Volant, James A. Tornello, Jennifer Lund
  • Patent number: 7202764
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: April 10, 2007
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John M. Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John H. Magerlein, Kenneth Stein, Richard P. Volant, James A. Tornello, Jennifer Lund
  • Patent number: 7199450
    Abstract: Sealing a via using a soventless, low viscosity, high temperature stable polymer or a high solids content polymer solution of low viscosity, where the polymeric material is impregnated within the via at an elevated temperature. A supply chamber is introduced to administer the polymeric material at an elevated temperature, typically at a temperature high enough to liquefy the polymeric material. The polymeric material is introduced through heated supply lines under force from a pump, piston, or a vacuum held within said supply chamber.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: April 3, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jon A. Casey, Michael Berger, Leena P. Buchwalter, Donald F. Canaperi, Raymond R. Horton, Anurag Jain, Eric D. Perfecto, James A. Tornello
  • Publication number: 20060255480
    Abstract: Sealing a via using a soventless, low viscosity, high temperature stable polymer or a high solids content polymer solution of low viscosity, where the polymeric material is impregnated within the via at an elevated temperature. A supply chamber is introduced to administer the polymeric material at an elevated temperature, typically at a temperature high enough to liquefy the polymeric material. The polymeric material is introduced through heated supply lines under force from a pump, piston, or a vacuum held within said supply chamber.
    Type: Application
    Filed: May 13, 2005
    Publication date: November 16, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jon Casey, Michael Berger, Leena Buchwalter, Donald Canaperi, Raymond Horton, Anurag Jain, Eric Perfecto, James Tornello
  • Publication number: 20060164194
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400° C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Application
    Filed: February 21, 2006
    Publication date: July 27, 2006
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Paivikki Buchwalter, John Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John Magerlein, Kenneth Stein, Richard Volant, James Tornello, Jennifer Lund
  • Publication number: 20050007217
    Abstract: A semiconductor micro-electromechanical system (MEMS) switch provided with noble metal contacts that act as an oxygen barrier to copper electrodes is described. The MEMS switch is fully integrated into a CMOS semiconductor fabrication line. The integration techniques, materials and processes are fully compatible with copper chip metallization processes and are typically, a low cost and a low temperature process (below 400°0 C.). The MEMS switch includes: a movable beam within a cavity, the movable beam being anchored to a wall of the cavity at one or both ends of the beam; a first electrode embedded in the movable beam; and a second electrode embedded in an wall of the cavity and facing the first electrode, wherein the first and second electrodes are respectively capped by the noble metal contact.
    Type: Application
    Filed: July 8, 2003
    Publication date: January 13, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hariklia Deligianni, Panayotis Andricacos, L. Buchwalter, John Cotte, Christopher Jahnes, Mahadevaiyer Krishnan, John Magerlein, Kenneth Stein, Richard Volant, James Tornello, Jennifer Lund