Patents by Inventor James A. VANDER HEYDEN

James A. VANDER HEYDEN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230173279
    Abstract: A medical device is configured to determine tachyarrhythmia evidence in a cardiac signal segment received from a cardiac electrical signal sensed during a pacing escape interval started to schedule a pending cardiac pacing pulse. The medical device may delay the pending cardiac pacing pulse in response to determining the tachyarrhythmia evidence during the pacing escape interval.
    Type: Application
    Filed: November 9, 2022
    Publication date: June 8, 2023
    Inventors: Xusheng ZHANG, Saul E. GREENHUT, Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Michael W. HEINKS, Jean E. HUDSON, Timothy A. EBELING, Irving J. SANCHEZ, Scott R. HAWKINSON, Troy E. JACKSON, James VANDER HEYDEN
  • Publication number: 20230148939
    Abstract: A medical device is configured to determine an amplitude metric from a cardiac signal segment sensed over a predetermined time interval and determine if the amplitude metric meets an amplitude threshold. The medical device is configured to perform a first analysis of the cardiac electrical signal segment for detecting a first arrhythmia when the amplitude metric does not meet the amplitude threshold and perform a second analysis of the cardiac electrical signal segment for detecting a second arrhythmia different than the first arrhythmia in response to the amplitude metric meeting the amplitude threshold.
    Type: Application
    Filed: October 7, 2022
    Publication date: May 18, 2023
    Inventors: Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Saul E. GREENHUT, Troy E. JACKSON, Yuanzhen LIU, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230107061
    Abstract: A medical device is configured to receive cardiac electrical signals and sense ventricular event signals from the cardiac electrical signals. The medical device may start a validation window in response to sensing a ventricular event signal and determine if the ventricular event signal is a valid event signal or an invalid event signal based on processing of a different cardiac electrical signal than the cardiac electrical signal from which the ventricular event signal was sensed.
    Type: Application
    Filed: August 26, 2022
    Publication date: April 6, 2023
    Inventors: Saul E. GREENHUT, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Yuanzhen LIU, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230100431
    Abstract: A medical device is configured to sense first ventricular event signals from a first cardiac electrical signal and sense second ventricular event signals from a second cardiac electrical signal. The medical device is configured to determine sensed event data in response to the first ventricular event signals and the second ventricular event signals. The medical device may select one of the first cardiac electrical signal or the second cardiac electrical signal for providing input for tachyarrhythmia detection based on the sensed event data.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 30, 2023
    Inventors: Yuanzhen LIU, Alfonso ARANDA HERNANDEZ, Timothy A. EBELING, Saul E. GREENHUT, Michael W. HEINKS, Jean E. HUDSON, Troy E. JACKSON, Irving J. SANCHEZ, James A. VANDER HEYDEN, Xusheng ZHANG
  • Publication number: 20230075919
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.
    Type: Application
    Filed: October 27, 2022
    Publication date: March 9, 2023
    Inventors: Yanina GRINBERG, Paul D. BAKER, Lonny V. CABELKA, Craig W. DORMA, Timothy A. EBELING, Michael W. HEINKS, James VANDER HEYDEN, Joseph IPPOLITO, Joel R. LAUER, Robert T. SAWCHUK, Brian W. SCHOUSEK
  • Patent number: 11524169
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: December 13, 2022
    Assignee: Medtronic, Inc.
    Inventors: Yanina Grinberg, Paul D. Baker, Lonny V. Cabelka, Craig W. Dorma, Timothy A. Ebeling, Michael W. Heinks, James Vander Heyden, Joseph Ippolito, Joel R. Lauer, Robert W. Sawchuk, Brian W. Schousek
  • Publication number: 20180221677
    Abstract: An extra-cardiovascular implantable cardioverter defibrillator (ICD) having a high voltage therapy module is configured to control a high voltage charging circuit to charge a capacitor to a pacing voltage amplitude to deliver charge balanced pacing pulses. The capacitor is chargeable to a shock voltage amplitude that is greater than the pacing voltage amplitude. The ICD is configured to enable switching circuitry of the high voltage therapy module to discharge the capacitor to deliver a first pulse having a first polarity and a leading voltage amplitude corresponding to the pacing voltage amplitude for pacing the patient's heart via a pacing electrode vector selected from extra-cardiovascular electrodes. The high voltage therapy module delivers a second pulse after the first pulse. The second pulse has a second polarity opposite the first polarity and balances the electrical charge delivered during the first pulse.
    Type: Application
    Filed: February 6, 2017
    Publication date: August 9, 2018
    Inventors: Yanina GRINBERG, Paul D. BAKER, Lonny V. CABELKA, Craig W. DORMA, Timothy A. EBELING, Michael W. HEINKS, James VANDER HEYDEN, Joseph IPPOLITO, Joel R. LAUER, Robert W. SAWCHUK, Brian W. SCHOUSEK