Patents by Inventor James A. West

James A. West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10683801
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: June 16, 2020
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 10012151
    Abstract: A method of controlling an exhaust gas recirculation (EGR) gas turbine system includes adjusting an angle of a plurality of inlet guide vanes of an exhaust gas compressor of the EGR gas turbine system, wherein the plurality of inlet guide vanes have a first range of motion defined by a minimum angle and a maximum angle, and wherein the angle is adjusted based on one or more monitored or modeled parameters of the EGR gas turbine system. The method further includes adjusting a pitch of a plurality of blower vanes of a recycle blower disposed upstream of the exhaust gas compressor, wherein the plurality of blower vanes have a second range of motion defined by a minimum pitch and a maximum pitch, and the pitch of the plurality of blower vanes is adjusted based at least on the angle of the plurality of inlet guide vanes.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: July 3, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Jonathan Carl Thatcher, James A. West, Aaron Lavene Vorel
  • Publication number: 20170184021
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 9599070
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 21, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 9410479
    Abstract: A method for adjusting the operation of a turbomachine integrated with an exhaust gas recirculation (EGR) system is provided. The method may utilize the composition of an inlet fluid entering the turbomachine. The method may also utilize a variety of turbomachine operating data.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: August 9, 2016
    Assignee: General Electric Company
    Inventors: James A. West, Rex A. Morgan, Lewis B. Davis, Jr., Sam D. Draper, Amit Toprani
  • Publication number: 20150000293
    Abstract: A method of controlling an exhaust gas recirculation (EGR) gas turbine system includes adjusting an angle of a plurality of inlet guide vanes of an exhaust gas compressor of the EGR gas turbine system, wherein the plurality of inlet guide vanes have a first range of motion defined by a minimum angle and a maximum angle, and wherein the angle is adjusted based on one or more monitored or modeled parameters of the EGR gas turbine system. The method further includes adjusting a pitch of a plurality of blower vanes of a recycle blower disposed upstream of the exhaust gas compressor, wherein the plurality of blower vanes have a second range of motion defined by a minimum pitch and a maximum pitch, and the pitch of the plurality of blower vanes is adjusted based at least on the angle of the plurality of inlet guide vanes.
    Type: Application
    Filed: June 23, 2014
    Publication date: January 1, 2015
    Inventors: Jonathan Carl Thatcher, James A. West, Aaron Lavene Vorel
  • Publication number: 20140123620
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 8443478
    Abstract: This invention relates to a mechanism for use in a device that comprises a system for collecting dirt and debris from a variety of floor and upholstery surfaces. In particular the mechanism lifts and directs unwanted debris particles to a waste reservoir for the purpose of cleaning and grooming floor surfaces. The debris collection mechanism can be, but is not limited to its use in a handle operated cordless motorized floor sweeper to collect and gather unwanted debris and dust. The device includes a head unit that incorporates two easily removable elongate cylindrical rotating cleaning bars that are driven such that they contra rotate, and are positioned close to one another at the forward region of the head unit. A removable debris reservoir, removable rechargeable power source and handle incorporating a device operation switch are also included.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: May 21, 2013
    Assignee: Dovia International Limited
    Inventors: James A. West, Mark D. Teucher, Christopher T. Elsworthy
  • Patent number: 7784288
    Abstract: A method of protecting a turbine compressor of a gas turbine engine that is part of an integrated gasification combined-cycle power generation system that includes an air separation unit that may include the steps of: (1) extracting an amount of compressed air that is compressed by the turbine compressor; (2) supplying the extracted amount of compressed air to the air separation unit; and (3) varying the amount of compressed air extracted from the turbine compressor based upon a desired compressor pressure ratio across the turbine compressor. The method further may include the step of supplying the air separation unit with a supply of compressed air from a main air compressor. The amount of compressed air supplied to the air separation unit by the main air compressor may be varied based upon the amount of compressed air extracted from the turbine compressor.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: August 31, 2010
    Assignee: General Electric Company
    Inventors: Robert T. Thatcher, James A. West
  • Publication number: 20100115719
    Abstract: This invention relates to a mechanism for use in a device that comprises a system for collecting dirt and debris from a variety of floor and upholstery surfaces. In particular the mechanism lifts and directs unwanted debris particles to a waste reservoir for the purpose of cleaning and grooming floor surfaces. The debris collection mechanism can be, but is not limited to its use in a handle operated cordless motorized floor sweeper to collect and gather unwanted debris and dust. The device includes a head unit that incorporates two easily removable elongate cylindrical rotating cleaning bars that are driven such that they contra rotate, and are positioned close to one another at the forward region of the head unit. A removable debris reservoir, removable rechargeable power source and handle incorporating a device operation switch are also included.
    Type: Application
    Filed: January 20, 2010
    Publication date: May 13, 2010
    Applicant: DOVIA INTERNATIONAL LIMITED
    Inventors: James A. West, Mark D. Teucher, Christopher T. Elsworthy
  • Patent number: 7617687
    Abstract: A method of controlling a load of a gas turbine engine that is part of an integrated gasification combined-cycle power generation system, which includes an air separation unit, that includes the steps of: (1) extracting an amount of compressed air that is compressed by a turbine compressor; (2) supplying the extracted amount of compressed air to the air separation unit; and (3) varying the amount of compressed air extracted from the turbine compressor based upon a desired load for the gas turbine engine.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: November 17, 2009
    Assignee: General Electric Company
    Inventors: James A. West, Robert T. Thatcher
  • Publication number: 20090158734
    Abstract: A method for adjusting the operation of a turbomachine integrated with an exhaust gas recirculation (EGR) system is provided. The method may utilize the composition of an inlet fluid entering the turbomachine. The method may also utilize a variety of turbomachine operating data.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Inventors: James A. West, Rex A. Morgan, Lewis B. Davis, JR., Sam D. Draper, Amit Toprani
  • Patent number: 7463806
    Abstract: The present invention provides methods of generating short wavelength radiation, methods of transporting short wavelength radiation, and apparati used in these methods. One embodiment of the invention provides a method of transporting short wavelength radiation using a photonic band gap fiber. Another embodiment of the invention provides a method of transporting short wavelength radiation using a bundle of photonic band gap fibers. Another embodiment of the invention provides a method of generating ultraviolet radiation using high harmonic generation by pumping a noble gas-filled photonic band gap fiber with a pulsed laser source.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: December 9, 2008
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, John H. Bruning, Douglas S. Goodman, Karl W. Koch, III, Dirk Mueller, Charlene M. Smith, Alexander Streltsov, James A. West
  • Patent number: 7432649
    Abstract: A light source includes a first waveguide. The first waveguide includes a light emitting material having a first index of refraction and at least one layer is disposed over the light emitting material. The at least one layer has a second index of refraction and the first index of refraction is greater than the second index of refraction. The light source also includes a second waveguide, which is coupled to the first waveguide. The light emitting device also includes a light extraction structure.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: October 7, 2008
    Assignee: Corning, Incorporated
    Inventor: James A West
  • Patent number: 7403689
    Abstract: A plurality of active gain material (93) is disposed in an active interface portion (44) of a dielectric band-gap cladding confinement region (22) adjacent to a dielectric core (12) of a photonic band-gap crystal fiber (20), wherein during operation, the plurality of active gain material (93) absorbs the pump energy and stores the pump energy as a potential energy storage for stimulation by EM energy in a second guided mode at a second frequency in a second range of frequencies for overlapping with the first guided mode of the core (12) such that the surface defined by an interface between the photonic band-gap cladding (22) and the dielectric core (12) that supports at least one surface mode propagating at that interface (44) overlaps the active interface portion of the dielectric cladding confinement region and a state associated with the dielectric core (12).
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: July 22, 2008
    Assignee: Corning Incorporated
    Inventors: Karl W. Koch, III, James A. West
  • Patent number: 7082242
    Abstract: The present invention relates to a microstructured optical fiber including a photonic band gap-guided core; and at least one index-guided core. Another embodiment of the present invention relates to a microstructured optical fiber including a set of main cores; a microstructured region surrounding the set of main cores; and at least alignment core, the alignment cores having substantially different optical propagation properties than the main cores. The present invention also includes methods for coupling, monitoring, and locating discontinuities in the fibers of the present invention.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: July 25, 2006
    Assignee: Corning Incorporated
    Inventors: James C. Fajardo, Michael T. Gallagher, James A. West
  • Patent number: 7010921
    Abstract: A method and apparatus for cooling a combustor liner and transitions piece of a gas turbine include a combustor liner with a plurality of circular ring turbulators arranged in an array axially along a length defining a length of the combustor liner and located on an outer surface thereof; a first flow sleeve surrounding the combustor liner with a first flow annulus therebetween including a plurality of axial channels (C) extending over a portion of an aft end portion of the liner parallel to each other, the cross-sectional area of each channel either constant or varying along the length of the channel, the first flow sleeve having a plurality of rows of cooling holes formed about a circumference of the first flow sleeve for directing cooling air from the compressor discharge into the first flow annulus; a transition piece connected to the combustor liner and adapted to carry hot combustion gases to a stage of the turbine; a second flow sleeve surrounding the transition piece a second plurality of rows of cool
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: March 14, 2006
    Assignee: General Electric Company
    Inventors: John Charles Intile, James A. West, William Byrne
  • Patent number: 6870999
    Abstract: An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen -18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: March 22, 2005
    Assignee: Corning Incorporated
    Inventors: Douglas C. Allan, John T. Brown, Lisa C. Chacon, Adam J. G. Ellison, James C. Fajardo, Stuart Gray, Keith L. House, Karl W. Koch, III, Dale R. Powers, James A. West
  • Patent number: 6848414
    Abstract: A system and method for controlling multiple fuel injections during a single combustion cycle for a multiple cylinder internal combustion engine having a common rail fuel distribution system determine the beginning of injection for the pilot and main injections based on crankshaft position while post injections are based on the main injection timing and an injector turn off delay determined using actual rail pressure. A rail pressure setpoint is determined based on current engine operating conditions including one or more fluid temperatures and current operating mode to provide more accurate injection control.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: February 1, 2005
    Assignee: Detroit Diesel Corporation
    Inventors: James A. West, James E. McCarthy, Jr.
  • Patent number: 6847771
    Abstract: A microstructured optical fiber is described. The microstructured optical fiber comprises an inner region and an outer region. The inner region includes an inner material and a plurality of holes formed in the inner material. The outer region surrounds the inner region, and includes an outer material. The softening point temperature of the inner material is greater than the softening point temperature of the outer material by at least about 50° C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: January 25, 2005
    Assignee: Corning Incorporated
    Inventors: James C. Fajardo, Michael T. Gallagher, James A. West, Natesan Venkataraman