Patents by Inventor James A. Wollmershauser

James A. Wollmershauser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11944011
    Abstract: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: March 26, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Kevin P. Anderson, Benjamin L. Greenberg, James A. Wollmershauser, Alan G. Jacobs
  • Publication number: 20240068453
    Abstract: Aspects disclosed herein include graphite and hexagonal boron nitride bimaterials, methods of making these bimaterials, and electric propulsion devices or thrusters with these bimaterials. Aspects disclosed herein include electric propulsion devices comprising: at least one portion comprising or formed of a monolithic bimaterial; wherein the monolithic bimaterial comprises a graphite material and a hexagonal boron nitride material; and wherein the graphite material and hexagonal boron nitride material are monolithically integrated in the bimaterial.
    Type: Application
    Filed: August 25, 2023
    Publication date: February 29, 2024
    Inventors: Celia S. CHARI, Katherine T. FABER, Bryan W. McENERNEY, Richard R. HOFER, James A. WOLLMERSHAUSER, Edward P. GORZKOWSKI, III
  • Publication number: 20230200244
    Abstract: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 22, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Kevin P. Anderson, Benjamin L. Greenberg, James A. Wollmershauser, Alan G. Jacobs
  • Publication number: 20230200243
    Abstract: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 22, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Kevin P. Anderson, Benjamin L. Greenberg, James A. Wollmershauser, Alan G. Jacobs
  • Publication number: 20230180609
    Abstract: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 8, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Kevin P. Anderson, Benjamin L. Greenberg, James A. Wollmershauser, Alan G. Jacobs
  • Patent number: 11075049
    Abstract: A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO—CaO—Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: July 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar
  • Publication number: 20210102274
    Abstract: An alloy having the formula Ti1-xMx. M is Co, Sn, Cr, or a combination. The value x is from 0.001 to 0.02. A method of combining titanium metal and a dopant metal to form the alloy.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 8, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Steve Policastro, Derek Horton, Carlos Hangarter, James A. Wollmershauser, Rachel Anderson
  • Patent number: 10751801
    Abstract: A new Enhanced High Pressure Sintering (EHPS) method for making three-dimensional fully dense nanostructures and nano-heterostructures formed from nanoparticle powders, and three-dimensional fully dense nanostructures and nano-heterostructures formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated at an elevated temperature under a gas flow to produce a cleaned powder. The cleaned powder is formed into a low density green compact which is then sintered at a temperature below conventional sintering temperatures to produce a fully dense bulk material having a retained nanostructure or nano-heterostructure corresponding to the nanostructure of the constituent nanoparticles. All steps are performed without exposing the nanoparticle powder to the ambient.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: August 25, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser
  • Patent number: 10562784
    Abstract: A process for producing metastable nanocrystalline alpha-alumina (?-Al2O3) having particle sizes smaller than 12 nm. Starting crystallites of ?-Al2O3 having a particle size larger than 12 nm, typically on the order of about 50 nm, are ball-milled at low temperatures to produce a nanocrystalline ?-Al2O3 powder having a particle size of less than 12 nm, i.e., below the theoretical room temperature thermodynamic size limit at which ?-Al2O3 changes phase to ?-Al2O3, wherein the powder remains in the ?-Al2O3 phase at all times.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: February 18, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James A. Wollmershauser, John Drazin, Dana A. Kazerooni, Boris N. Feigelson, Edward P. Gorzkowski, III
  • Publication number: 20200043691
    Abstract: A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO—CaO—Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
    Type: Application
    Filed: October 15, 2019
    Publication date: February 6, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar
  • Patent number: 10513462
    Abstract: A method for making transparent nanocomposite ceramics and other solid bulk materials from nanoparticle powders and transparent nanocomposite ceramics and other solid bulk materials formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated to produce a clean surface powder. The clean surface powder is coated with a second material by means of p-ALD to produce core/shell or core multi shell nanoparticles having a coating or coatings of a other material surrounding the nanoparticle. The core/shell nanoparticles are cleaned and formed into green compact which is sintered to produce a transparent nanocomposite ceramic or other solid bulk material consisting of nanoparticles or core/shell nanoparticles uniformly embedded in a matrix of a different material, particularly in a matrix of a different ceramic material, formed by outer shell of initial core/shell. All steps are performed without exposing the material to the ambient.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: December 24, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar, Francis J. Kub
  • Patent number: 10497530
    Abstract: A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO—CaO—Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: December 3, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar
  • Publication number: 20190284058
    Abstract: A process for producing metastable nanocrystalline alpha-alumina (?-Al2O3) having particle sizes smaller than 12 nm. Starting crystallites of ?-Al2O3 having a particle size larger than 12 nm, typically on the order of about 50 nm, are ball-milled at low temperatures to produce a nanocrystalline ?-Al2O3 powder having a particle size of less than 12 nm, i.e., below the theoretical room temperature thermodynamic size limit at which ?-Al2O3 changes phase to ?-Al2O3, wherein the powder remains in the ?-Al2O3 phase at all times.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James A. Wollmershauser, John Drazin, Dana A. Kazerooni, Boris N. Feygelson, Edward P. Gorzkowski, III
  • Patent number: 10351435
    Abstract: A process for producing metastable nanocrystalline alpha-alumina (?-Al2O3) having particle sizes smaller than 12 nm. Starting crystallites of ?-Al2O3 having a particle size larger than 12 nm, typically on the order of about 50 nm, are ball-milled at low temperatures to produce a nanocrystalline ?-Al2O3 powder having a particle size of less than 12 nm, i.e., below the theoretical room temperature thermodynamic size limit at which ?-Al2O3 changes phase to ?-Al2O3, wherein the powder remains in the ?-Al2O3 phase at all times.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: July 16, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: James A. Wollmershauser, John Drazin, Dana A. Kazerooni, Boris N. Feigelson, Edward P. Gorzkowski, III
  • Publication number: 20180111841
    Abstract: A process for producing metastable nanocrystalline alpha-alumina (?-Al2O3) having particle sizes smaller than 12 nm. Starting crystallites of ?-Al2O3 having a particle size larger than 12 nm, typically on the order of about 50 nm, are ball-milled at low temperatures to produce a nanocrystalline ?-Al2O3 powder having a particle size of less than 12 nm, i.e., below the theoretical room temperature thermodynamic size limit at which ?-Al2O3 changes phase to ?-Al2O3, wherein the powder remains in the ?-Al2O3 phase at all times.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 26, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James A. Wollmershauser, John Drazin, Dana A. Kazerooni, Boris N. Feigelson, Edward P. Gorzkowski, III
  • Publication number: 20170167034
    Abstract: An alloy having the formula Ti1-xMx. M is Co, Sn, Cr, or a combination. The value x is from 0.001 to 0.02. A method of combining titanium metal and a dopant metal to form the alloy.
    Type: Application
    Filed: December 15, 2016
    Publication date: June 15, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Steve Policastro, Derek Horton, Carlos Hangarter, James A. Wollmershauser, Rachel Anderson
  • Publication number: 20170073276
    Abstract: A method for making transparent nanocomposite ceramics and other solid bulk materials from nanoparticle powders and transparent nanocomposite ceramics and other solid bulk materials formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated to produce a clean surface powder. The clean surface powder is coated with a second material by means of p-ALD to produce core/shell or core multi shell nanoparticles having a coating or coatings of a other material surrounding the nanoparticle. The core/shell nanoparticles are cleaned and formed into green compact which is sintered to produce a transparent nanocomposite ceramic or other solid bulk material consisting of nanoparticles or core/shell nanoparticles uniformly embedded in a matrix of a different material, particularly in a matrix of a different ceramic material, formed by outer shell of initial core/shell. All steps are performed without exposing the material to the ambient.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 16, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar, Francis J. Kub
  • Publication number: 20160300684
    Abstract: A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO-CaO-Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
    Type: Application
    Filed: April 8, 2016
    Publication date: October 13, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar
  • Publication number: 20150147590
    Abstract: A new Enhanced High Pressure Sintering (EHPS) method for making three-dimensional fully dense nanostructures and nano-heterostructures formed from nanoparticle powders, and three-dimensional fully dense nanostructures and nano-heterostructures formed using that method. A nanoparticle powder is placed into a reaction chamber and is treated at an elevated temperature under a gas flow to produce a cleaned powder. The cleaned powder is formed into a low density green compact which is then sintered at a temperature below conventional sintering temperatures to produce a fully dense bulk material having a retained nanostructure or nano-heterostructure corresponding to the nanostructure of the constituent nanoparticles. All steps are performed without exposing the nanoparticle powder to the ambient.
    Type: Application
    Filed: November 14, 2014
    Publication date: May 28, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser