Patents by Inventor James Alan Pixley

James Alan Pixley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11222768
    Abstract: Disclosed is a semiconductor processing apparatus including one or more components having a conductive or nonconductive porous material. In some embodiments, an ion implanter may include a plurality of beam line components for directing an ion beam to a target, and a porous material along a surface of at least one of the plurality of beamline components.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: January 11, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James Alan Pixley, Eric D. Hermanson, Philip Layne, Lyudmila Stone, Thomas Stacy
  • Patent number: 10867772
    Abstract: Provided herein are approaches for increasing surface area of a conductive beam optic by providing grooves or surface features thereon. In one approach, the conductive beam optic may be part of an electrostatic filter having a plurality of conductive beam optics disposed along an ion beam-line, wherein at least one conductive beam optic includes a plurality of grooves formed in an exterior surface. In some approaches, a power supply may be provided in communication with the plurality of conductive beam optics, wherein the power supply is configured to supply a voltage and a current to the plurality of conductive beam optics. The plurality of grooves may be provided in a spiral pattern along a length of the conductive beam optic, and/or oriented parallel to a lengthwise axis of the conductive beam optic.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: December 15, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Eric Hermanson, Philip Layne, James Alan Pixley
  • Patent number: 10643823
    Abstract: Disclosed is a semiconductor processing apparatus including one or more components having a conductive or nonconductive foam material. In some embodiments, the component is a plasma flood gun including a shield assembly coupled to the plasma flood gun. The shield assembly may include a first shield having a first main side facing an ion beam target, and a connection block coupled to a second main side of the first shield. The shield assembly may further include a mounting plate coupled to the connection block, and a second shield coupled to the mounting plate by a bracket. In some embodiments, the first shield and/or one or more process chamber walls includes a foam material, such as a conductive or nonconductive foam.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: May 5, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James Alan Pixley, Eric D. Hermanson, Philip Layne, Lyudmila Stone, Thomas Stacy
  • Publication number: 20200083027
    Abstract: Disclosed is a semiconductor processing apparatus including one or more components having a conductive or nonconductive foam material. In some embodiments, the component is a plasma flood gun including a shield assembly coupled to the plasma flood gun. The shield assembly may include a first shield having a first main side facing an ion beam target, and a connection block coupled to a second main side of the first shield. The shield assembly may further include a mounting plate coupled to the connection block, and a second shield coupled to the mounting plate by a bracket. In some embodiments, the first shield and/or one or more process chamber walls includes a foam material, such as a conductive or nonconductive foam.
    Type: Application
    Filed: October 16, 2018
    Publication date: March 12, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James Alan Pixley, Eric D. Hermanson, Philip Layne, Lyudmila Stone, Thomas Stacy
  • Publication number: 20200083021
    Abstract: Disclosed is a semiconductor processing apparatus including one or more components having a conductive or nonconductive porous material. In some embodiments, an ion implanter may include a plurality of beam line components for directing an ion beam to a target, and a porous material along a surface of at least one of the plurality of beamline components.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 12, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: James Alan Pixley, Eric D. Hermanson, Philip Layne, Lyudmila Stone, Thomas Stacy
  • Publication number: 20200020508
    Abstract: Provided herein are approaches for increasing surface area of a conductive beam optic by providing grooves or surface features thereon. In one approach, the conductive beam optic may be part of an electrostatic filter having a plurality of conductive beam optics disposed along an ion beam-line, wherein at least one conductive beam optic includes a plurality of grooves formed in an exterior surface. In some approaches, a power supply may be provided in communication with the plurality of conductive beam optics, wherein the power supply is configured to supply a voltage and a current to the plurality of conductive beam optics. The plurality of grooves may be provided in a spiral pattern along a length of the conductive beam optic, and/or oriented parallel to a lengthwise axis of the conductive beam optic.
    Type: Application
    Filed: March 19, 2018
    Publication date: January 16, 2020
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Eric Hermanson, Philip Layne, James Alan Pixley
  • Patent number: 9613778
    Abstract: Provided herein are approaches for securing electrostatic elements within a lens component. In one approach, a connector includes a flexible coupling secured at a first end to an electrostatic element of a plurality of electrostatic elements, the plurality of electrostatic elements extending between a set of sidewalls of the lens component. The connector further includes a stub protruding from a feedthrough component provided through the set of sidewalls, the stub secured to the flexible coupling at a second end of the flexible coupling.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: April 4, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Mayur Jagtap, Eric Hermanson, James Alan Pixley