Patents by Inventor James Anthony Feldman

James Anthony Feldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110204548
    Abstract: Tray assemblies and methods for manufacturing ceramic articles are provided. In one embodiment, a tray assembly includes a tray body having a supporting surface operable to support a ceramic article for passage through a microwave drying apparatus during a microwave drying process and a microwave coupling cover associated with the tray body. The microwave coupling cover envelopes at least a portion of the ceramic article during the microwave drying process. The microwave coupling cover has a dielectric property such that a greater percentage of microwave energy is coupled into the ceramic article with the microwave coupling cover present during the microwave drying process than with the microwave coupling cover not present. Methods may include rotating the ceramic article when the ceramic article is about 40%-60 dry.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 25, 2011
    Inventors: Jacob George, James Anthony Feldman, Nadezhda P. Paramonova, Michael Dean Seymour
  • Patent number: 7862764
    Abstract: Electromagnetic (EM) drying of a plugged ware is provided that includes subjecting the ware to an axially non-uniform EM radiation field that causes more EM radiation to be dissipated in either of the plugged regions than in the unplugged region. The EM radiation field is provided by a configurable applicator system that includes a feed waveguide and a conveyor path. The feed waveguide includes configurable slots. The configurable applicator system can be set to selectively vary the amount of EM radiation dissipated by each ware along the longitudinal axis of each ware as a function of ware position along the conveying path, thereby enhancing the EM drying process.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 4, 2011
    Assignee: Corning Incorporated
    Inventors: James Anthony Feldman, Jacob George, Kevin Robert McCann, Rebecca Lynn Schulz, Gary Graham Squier, Elizabeth Marie Vileno
  • Publication number: 20100043248
    Abstract: Methods for drying ceramic greenware in a manner that substantially compensates for otherwise non-uniform drying are disclosed. The methods generally include partially drying a piece (22) of greenware such that its end portions (22E) are drier than its middle portion (22C). The method also includes further drying the piece with radio-frequency (RF) radiation (88) generated by an electrode system (130) by conveying the piece through the electrode system. The electrode system has a main planar electrode (131E) with a longitudinal axis (AE), and an electrode concentrator (131C) formed thereon or attached thereto. The electrode concentrator has a central section (140) that runs in the direction of the longitudinal axis of the electrode and is configured so that when the piece is conveyed through the electrode system, the electrode system concentrates more RF radiation at the center portion of the piece than at the end portions of the piece.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 25, 2010
    Inventors: Ronald A. Cervoni, James Anthony Feldman, Michelle Yumiko Ronco
  • Publication number: 20090294438
    Abstract: A method and system for drying a honeycomb structure having an original liquid vehicle content includes exposing the honeycomb structure to a first electromagnetic radiation source until the liquid vehicle content is between about 20% and about 60% of the original liquid vehicle content, exposing the honeycomb structure to a second electromagnetic radiation source different from the first electromagnetic radiation source until the liquid vehicle content is between about 0% and about 30% of the original liquid vehicle content, and exposing the honeycomb structure to convection heating until the liquid vehicle content is between about 0% and about 30% of the original liquid vehicle content.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Inventors: Paul Andreas Adrian, Rebecca Lynn Burt, James Anthony Feldman, Elizabeth Marie Vileno
  • Publication number: 20090294440
    Abstract: Systems and methods for controlling drying of ceramic greenwares in a manner that accounts for the load presented to a radio-frequency (RF) source of an RF applicator to reduce the risk of overheating greenware during drying. The method includes partially drying the greenware and then substantially drying the greenware with RF radiation. The amount of RF radiation provided to an electrode region is controlled based on the number of greenware pieces within the electrode region at a given time. The system includes a control unit electrically connected to the electrode and configured to provide a select RF voltage to the electrode based on the number of greenwares within the electrode region. The system adjusts at least one input voltage from a power supply. The adjusted voltage is stepped-up, DC-rectified to form a plate voltage, and then is converted by a high-frequency DC/AC convertor to the select high-frequency AC RF voltage needed to dry the greenwares without overheating.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Inventors: Paul Andreas Adrian, James Anthony Feldman, Michelle Yumiko Ronco, Terri A. Waschezyn
  • Patent number: 7596885
    Abstract: A method for drying a ceramic article comprises providing microwave radiation from a microwave generating source, providing a ceramic honeycomb structure having a middle portion and at least one end, and exposing the ceramic honeycomb structure to the microwave radiation while shielding the at least one end from directly receiving the microwave radiation, such that the radiation absorbed by the middle portion is equal to or greater than the radiation absorbed by the at least one end, and the proper drying of the entire honeycomb structure without heat-induced structural degradation is thus ensured.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: October 6, 2009
    Assignee: Corning Incorporated
    Inventors: Paul Andreas Adrian, James Anthony Feldman, Jacob George, Elizabeth Marie Vileno
  • Publication number: 20080258348
    Abstract: Electromagnetic (EM) drying of a plugged ware is provided that includes subjecting the ware to an axially non-uniform EM radiation field that causes more EM radiation to be dissipated in either of the plugged regions than in the unplugged region. The EM radiation field is provided by a configurable applicator system that includes a feed waveguide and a conveyor path. The feed waveguide includes configurable slots. The configurable applicator system can be set to selectively vary the amount of EM radiation dissipated by each ware along the longitudinal axis of each ware as a function of ware position along the conveying path, thereby enhancing the EM drying process.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 23, 2008
    Inventors: James Anthony Feldman, Jacob George, Kevin Robert McCann, Rebecca Lynn Schulz, Gary Graham Squier, Elizabeth Marie Vileno
  • Publication number: 20080023886
    Abstract: A method for drying a ceramic article comprises providing microwave radiation from a microwave generating source, providing a ceramic honeycomb structure having a middle portion and at least one end, and exposing the ceramic honeycomb structure to the microwave radiation while shielding the at least one end from directly receiving the microwave radiation, such that the radiation absorbed by the middle portion is equal to or greater than the radiation absorbed by the at least one end, and the proper drying of the entire honeycomb structure without heat-induced structural degradation is thus ensured.
    Type: Application
    Filed: July 28, 2006
    Publication date: January 31, 2008
    Inventors: Paul Andreas Adrian, James Anthony Feldman, Jacob George, Elizabeth Marie Vileno