Patents by Inventor James Austin Besley
James Austin Besley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12167140Abstract: This disclosure is related to positioning one or more glass plates between an image sensor and lens of a camera in a scanning camera system; determining plate rotation rates and plate rotation angles based on one of characteristics of the camera, characteristics and positioning of the one or more glass plates, and relative dynamics of the camera and the object area; and rotating the one or more glass plates about one or more predetermined axes based on corresponding plate rotation rates and plate rotation angles.Type: GrantFiled: December 4, 2023Date of Patent: December 10, 2024Assignee: NEARMAP AUSTRALIA PTY LTD.Inventors: James Austin Besley, Mark Harold Tarlinton, David Arnold Bleads
-
Publication number: 20240310715Abstract: An imaging system can include a first and second camera configured to capture first and second sets of oblique images along first and second scan paths, respectively, on an object area. A drive is coupled to a scanning mirror structure, having at least one mirror surface, and configured to rotate the structure about a scan axis based on a scan angle. The first and second cameras each have an optical axis set at an oblique angle to the scan axis and include a respective lens to focus first and second imaging beams reflected from the mirror surface to an image sensor located in each of the cameras. The first and second imaging beams captured by their respective cameras can vary according to the scan angle. Each of the image sensors captures respective sets of oblique images by sampling the imaging beams at first and second values of the scan angle.Type: ApplicationFiled: June 28, 2021Publication date: September 19, 2024Applicant: Nearmap Australia Pty Ltd.Inventors: James Austin BESLEY, Mark Harold TARLINTON, David Arnold BLEADS
-
Publication number: 20240305892Abstract: The present disclosure is directed to a camera configured to capture a set of oblique images along a scan path on an object area; a scanning mirror structure including at least one surface for receiving light from the object area, the at least one surface having at least one first mirror portion at least one second portion comprised of low reflective material arranged around a periphery of the first mirror portion, the low reflective material being less reflective than the first mirror portion; and a drive coupled to the scanning mirror structure and configured to rotate the scanning mirror structure about a rotation axis based on a scan angle. The at least one second portion can be configured to block light that would pass around the first mirror portion and be received by the camera at scan angles beyond the set of scan angles.Type: ApplicationFiled: May 16, 2024Publication date: September 12, 2024Applicant: Nearmap Australia Pty Ltd.Inventors: David Arnold BLEADS, James Austin BESLEY, Mark Harold TARLINTON
-
Patent number: 12063443Abstract: An imaging system can include a first and second camera configured to capture first and second sets of oblique images along first and second scan paths, respectively, on an object area. A drive is coupled to a scanning mirror structure, having at least one mirror surface, and configured to rotate the structure about a scan axis based on a scan angle. The first and second cameras each have an optical axis set at an oblique angle to the scan axis and include a respective lens to focus first and second imaging beams reflected from the mirror surface to an image sensor located in each of the cameras. The first and second imaging beams captured by their respective cameras can vary according to the scan angle. Each of the image sensors captures respective sets of oblique images by sampling the imaging beams at first and second values of the scan angle.Type: GrantFiled: April 11, 2023Date of Patent: August 13, 2024Assignee: NEARMAP AUSTRALIA PTY LTD.Inventors: James Austin Besley, Mark Harold Tarlinton, David Arnold Bleads
-
Patent number: 12015853Abstract: The present disclosure is directed to a camera configured to capture a set of oblique images along a scan path on an object area; a scanning mirror structure including at least one surface for receiving light from the object area, the at least one surface having at least one first mirror portion at least one second portion comprised of low reflective material arranged around a periphery of the first mirror portion, the low reflective material being less reflective than the first mirror portion; and a drive coupled to the scanning mirror structure and configured to rotate the scanning mirror structure about a rotation axis based on a scan angle. The at least one second portion can be configured to block light that would pass around the first mirror portion and be received by the camera at scan angles beyond the set of scan angles.Type: GrantFiled: June 29, 2021Date of Patent: June 18, 2024Assignee: NEARMAP AUSTRALIA PTY LTD.Inventors: David Arnold Bleads, James Austin Besley, Mark Harold Tarlinton
-
Publication number: 20240196095Abstract: The present disclosure is directed to a camera configured to capture a set of oblique images along a scan path on an object area; a scanning mirror structure including at least one surface for receiving light from the object area, the at least one surface having at least one first mirror portion at least one second portion comprised of low reflective material arranged around a periphery of the first mirror portion, the low reflective material being less reflective than the first mirror portion; and a drive coupled to the scanning mirror structure and configured to rotate the scanning mirror structure about a rotation axis based on a scan angle. The at least one second portion can be configured to block light that would pass around the first mirror portion and be received by the camera at scan angles beyond the set of scan angles.Type: ApplicationFiled: June 29, 2021Publication date: June 13, 2024Applicant: Nearmap Australia Pty Ltd.Inventors: David Arnold BLEADS, James Austin BESLEY, Mark Harold TARLINTON
-
Patent number: 11997390Abstract: This disclosure is related to positioning one or more glass plates between an image sensor and lens of a camera in a scanning camera system; determining plate rotation rates and plate rotation angles based on one of characteristics of the camera, characteristics and positioning of the one or more glass plates, and relative dynamics of the camera and the object area; and rotating the one or more glass plates about one or more predetermined axes based on corresponding plate rotation rates and plate rotation angles.Type: GrantFiled: June 29, 2021Date of Patent: May 28, 2024Assignee: NEARMAP AUSTRALIA PTY LTD.Inventors: James Austin Besley, Mark Harold Tarlinton, David Arnold Bleads
-
Patent number: 11985429Abstract: The present disclosure is related to improving image quality in a scanning camera system via scan angle selection to obtain images having overlap for performing image stitching, dynamically tuning an aperture of a camera in the scanning camera system, updating pixel values of an image using vignetting data, or a combination thereof.Type: GrantFiled: June 29, 2021Date of Patent: May 14, 2024Assignee: NEARMAP AUSTRALIA PTY LTD.Inventors: James Austin Besley, Mark Harold Tarlinton, David Arnold Bleads
-
Publication number: 20240121513Abstract: The present disclosure is related to improving image quality in a scanning camera system via scan angle selection to obtain images having overlap for performing image stitching, dynamically tuning an aperture of a camera in the scanning camera system, updating pixel values of an image using vignetting data, or a combination thereof.Type: ApplicationFiled: December 15, 2023Publication date: April 11, 2024Applicant: Nearmap Australia Pty Ltd.Inventors: James Austin BESLEY, Mark Harold TARLINTON, David Arnold BLEADS
-
Publication number: 20240098374Abstract: This disclosure is related to positioning one or more glass plates between an image sensor and lens of a camera in a scanning camera system; determining plate rotation rates and plate rotation angles based on one of characteristics of the camera, characteristics and positioning of the one or more glass plates, and relative dynamics of the camera and the object area; and rotating the one or more glass plates about one or more predetermined axes based on corresponding plate rotation rates and plate rotation angles.Type: ApplicationFiled: December 4, 2023Publication date: March 21, 2024Applicant: Nearmap Australia Pty Ltd.Inventors: James Austin BESLEY, Mark Harold TARLINTON, David Arnold BLEADS
-
Patent number: 11722776Abstract: An imaging system can include a first and second camera configured to capture first and second sets of oblique images along first and second scan paths, respectively, on an object area. A drive is coupled to a scanning mirror structure, having at least one mirror surface, and configured to rotate the structure about a scan axis based on a scan angle. The first and second cameras each have an optical axis set at an oblique angle to the scan axis and include a respective lens to focus first and second imaging beams reflected from the mirror surface to an image sensor located in each of the cameras. The first and second imaging beams captured by their respective cameras can vary according to the scan angle. Each of the image sensors captures respective sets of oblique images by sampling the imaging beams at first and second values of the scan angle.Type: GrantFiled: June 29, 2021Date of Patent: August 8, 2023Assignee: NEARMAP AUSTRALIA PTY LTD.Inventors: James Austin Besley, Mark Harold Tarlinton, David Arnold Bleads
-
Publication number: 20230247298Abstract: An imaging system can include a first and second camera configured to capture first and second sets of oblique images along first and second scan paths, respectively, on an object area. A drive is coupled to a scanning mirror structure, having at least one mirror surface, and configured to rotate the structure about a scan axis based on a scan angle. The first and second cameras each have an optical axis set at an oblique angle to the scan axis and include a respective lens to focus first and second imaging beams reflected from the mirror surface to an image sensor located in each of the cameras. The first and second imaging beams captured by their respective cameras can vary according to the scan angle. Each of the image sensors captures respective sets of oblique images by sampling the imaging beams at first and second values of the scan angle.Type: ApplicationFiled: April 11, 2023Publication date: August 3, 2023Applicant: Nearmap Australia Pty Ltd.Inventors: James Austin BESLEY, Mark Harold TARLINTON, David Arnold BLEADS
-
Publication number: 20220417430Abstract: An imaging system can include a first and second camera configured to capture first and second sets of oblique images along first and second scan paths, respectively, on an object area. A drive is coupled to a scanning mirror structure, having at least one mirror surface, and configured to rotate the structure about a scan axis based on a scan angle. The first and second cameras each have an optical axis set at an oblique angle to the scan axis and include a respective lens to focus first and second imaging beams reflected from the mirror surface to an image sensor located in each of the cameras. The first and second imaging beams captured by their respective cameras can vary according to the scan angle. Each of the image sensors captures respective sets of oblique images by sampling the imaging beams at first and second values of the scan angle.Type: ApplicationFiled: June 29, 2021Publication date: December 29, 2022Applicant: Nearmap Australia Pty Ltd.Inventors: James Austin BESLEY, Mark Harold TARLINTON, David Arnold BLEADS
-
Publication number: 20220417403Abstract: The present disclosure is related to improving image quality in a scanning camera system via scan angle selection to obtain images having overlap for performing image stitching, dynamically tuning an aperture of a camera in the scanning camera system, updating pixel values of an image using vignetting data, or a combination thereof.Type: ApplicationFiled: June 29, 2021Publication date: December 29, 2022Applicant: Nearmap Australia Pty Ltd.Inventors: James Austin BESLEY, Mark Harold TARLINTON, David Arnold BLEADS
-
Publication number: 20220417396Abstract: This disclosure is related to positioning one or more glass plates between an image sensor and lens of a camera in a scanning camera system; determining plate rotation rates and plate rotation angles based on one of characteristics of the camera, characteristics and positioning of the one or more glass plates, and relative dynamics of the camera and the object area; and rotating the one or more glass plates about one or more predetermined axes based on corresponding plate rotation rates and plate rotation angles.Type: ApplicationFiled: June 29, 2021Publication date: December 29, 2022Applicant: Nearmap Australia Pty Ltd.Inventors: James Austin BESLEY, Mark Harold TARLINTON, David Arnold BLEADS
-
Publication number: 20220417395Abstract: The present disclosure is directed to a camera configured to capture a set of oblique images along a scan path on an object area; a scanning mirror structure including at least one surface for receiving light from the object area, the at least one surface having at least one first mirror portion at least one second portion comprised of low reflective material arranged around a periphery of the first mirror portion, the low reflective material being less reflective than the first mirror portion; and a drive coupled to the scanning mirror structure and configured to rotate the scanning mirror structure about a rotation axis based on a scan angle. The at least one second portion can be configured to block light that would pass around the first mirror portion and be received by the camera at scan angles beyond the set of scan angles.Type: ApplicationFiled: June 29, 2021Publication date: December 29, 2022Applicant: Nearmap Australia Pty Ltd.Inventors: David Arnold BLEADS, James Austin BESLEY, Mark Harold TARLINTON
-
Patent number: 10951879Abstract: A method for synthesising a viewpoint, comprising: capturing a scene using a network of cameras, the cameras defining a system volume of the scene, wherein a sensor of one of the cameras has an output frame rate for the system volume below a predetermined frame rate; selecting a portion of the system volume as an operational volume based on the sensor output frame rate, the predetermined frame rate and a region of interest, the operational volume being a portion of the system volume from which image data for the viewpoint can be synthesised at the predetermined frame rate, wherein a frame rate for synthesising a viewpoint outside the operational volume is limited by the output frame rate; reading, from the sensors at the predetermined frame rate, image data corresponding to the operational volume; and synthesising the viewpoint at the predetermined frame rate using the image data.Type: GrantFiled: December 4, 2017Date of Patent: March 16, 2021Assignee: Canon Kabushiki KaishaInventor: James Austin Besley
-
Patent number: 10887519Abstract: A method of stabilising frames of a captured video sequence. First reference patch alignment data is received for each of a plurality of reference patch locations. A first stable frame and a subsequent stable frame are determined from a first plurality of frames based on the first plurality of reference patch locations and reference patch alignment data. A second plurality of reference patch locations is determined using image data from the first stable frame, the second plurality of reference patch locations being determined concurrently with determining the subsequent stable frame from the first plurality of frames. Image data for the determined second plurality of reference patch locations is extracted from the subsequent stable frame. A second plurality of stable frames of the captured video sequence is determined with respect to the reference frame using the second plurality of reference patch locations and the extracted image data.Type: GrantFiled: April 2, 2020Date of Patent: January 5, 2021Assignee: Canon Kabushiki KaishaInventors: James Austin Besley, Iain Bruce Templeton
-
Patent number: 10878577Abstract: A method of segmenting an image of a scene captured using one of a plurality of cameras in a network. A mask of an image of a scene captured by a first one of said cameras is received. A set of pixels in the mask likely to be in a foreground of an image captured by a second one of said cameras is determined based on the received mask, calibration information, and a geometry of the scene. A set of background pixels for the second camera is generated based on the determined set of pixels. The generated set of background pixels is transmitted to the second camera. The image of the scene captured by the second camera is segmented using the transmitted background pixels.Type: GrantFiled: December 14, 2018Date of Patent: December 29, 2020Assignee: Canon Kabushiki KaishaInventors: Paul William Morrison, James Austin Besley
-
Patent number: 10859809Abstract: A system for forming an image (110) of a substantially translucent specimen (102) has an illuminator (108) configured to variably illuminate the specimen from a plurality of angles of illumination such that (a) when each angle (495) at a given point on the specimen is mapped to a point (445) on a plane (420) perpendicular to an optical axis (490), the points on the plane have an increasing density (e.g. FIGS. 4, 11C, 11E, 12C, 12E, 13A, 14A, 14C, 14E, 15A, 15C, 15E) towards an axial position on the plane; or (b) the illumination angles are arranged with a substantially regular pattern in a polar coordinate system (FIG. 13A,13B) defined by a radial coordinate that depends on the magnitude of the distance from an optical axis and an angular coordinate corresponding to the orientation of the angle relative to the optical axis.Type: GrantFiled: December 11, 2015Date of Patent: December 8, 2020Assignee: CANON KABUSHIKI KAISHAInventor: James Austin Besley