Patents by Inventor James B. C. Wu

James B. C. Wu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10662518
    Abstract: A material blend for deposition of an abrasion-resistant overlay onto a metal substrate comprising a first metal particle component, a second metal particle component, and a carbide particle component and a method for the application thereof, wherein the overlay process conditions and the homogeneity of tungsten carbide distribution in the overlay are improved.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: May 26, 2020
    Assignee: KENNAMETAL INC.
    Inventors: Thomas Swingley, Kevin Luer, Rodrick Webber, James B. C. Wu
  • Patent number: 9556506
    Abstract: A multilayer, wear- and corrosion-resistant coating on a metal substrate comprising a first metal coating layer comprising a composite carbide material; a second metal coating layer over the first metal coating layer comprising at least about 50 wt % of a metal selected from the group consisting of Co, Ni, and Fe; and a surface metal coating layer comprising a cemented carbide material having a third-layer carbide material and a third-layer Co-based or Ni-based binder material.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: January 31, 2017
    Assignee: KENNAMETAL INC.
    Inventors: David A. Lee, Heidi Lynette de Villiers-Lovelock, Danie Jacobus Dewet, James B. C. Wu
  • Publication number: 20160355922
    Abstract: A material blend for deposition of an abrasion-resistant overlay onto a metal substrate comprising a first metal particle component, a second metal particle component, and a carbide particle component and a method for the application thereof, wherein the overlay process conditions and the homogeneity of tungsten carbide distribution in the overlay are improved.
    Type: Application
    Filed: August 22, 2016
    Publication date: December 8, 2016
    Inventors: Thomas SWINGLEY, Kevin LUER, Rodrick WEBBER, James B.C. WU
  • Patent number: 9422616
    Abstract: A material blend for deposition of an abrasion-resistant overlay onto a metal substrate comprising a first metal particle component, a second metal particle component, and a carbide particle component and a method for the application thereof, wherein the overlay process conditions and the homogeneity of tungsten carbide distribution in the overlay are improved.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: August 23, 2016
    Assignee: KENNAMETAL INC.
    Inventors: Thomas Swingley, Kevin Luer, Roderick Webber, James B. C. Wu
  • Patent number: 9051631
    Abstract: A wear- and corrosion-resistant alloy, and related application method, where the alloy has by approximate weight %, C 0.12-0.7, Cr 20-30, Mo 7-15, Ni 1-4, and Co balance, wherein the alloy further contains one or more carbide-former elements from the group consisting of Ti, Zr, Hf, V, Nb, and Ta in a cumulative concentration to stoichiometrically offset between about 30% and about 90% of the C in the alloy.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: June 9, 2015
    Assignee: Kennametal Inc.
    Inventors: James B. C. Wu, Matthew X. Yao
  • Publication number: 20140147595
    Abstract: A method of imparting high-temperature, degradation resistance to a component involving applying a metal slurry comprising a Co-based metallic composition comprising Co, Cr, W, Si, C, and B, a binder, and a solvent to a surface of the component, and sintering the Co-based metallic composition to form a substantially continuous Co-based alloy coating on the surface of the body.
    Type: Application
    Filed: January 21, 2014
    Publication date: May 29, 2014
    Applicant: KENNAMETAL INC.
    Inventors: Abdelhakim Belhadjhamida, Joseph Overton, James B. C. Wu
  • Publication number: 20140072821
    Abstract: A multilayer, wear- and corrosion-resistant coating on a metal substrate comprising a first metal coating layer comprising a composite carbide material; a second metal coating layer over the first metal coating layer comprising at least about 50 wt % of a metal selected from the group consisting of Co, Ni, and Fe; and a surface metal coating layer comprising a cemented carbide material having a third-layer carbide material and a third-layer Co-based or Ni-based binder material.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Applicant: KENNAMETAL INC.
    Inventors: David A. Lee, Heidi Lynette de Villiers-Lovelock, Danie Jacobus Dewet, James B. C. Wu
  • Patent number: 8668959
    Abstract: A method of imparting high-temperature, degradation resistance to a metallic component involving applying a metal slurry comprising a Co-based metallic composition containing Co, Cr, Mo, Si, and B, a binder, and a solvent to a surface of the component, and sintering the Co-based metallic composition to form a substantially continuous Co-based alloy coating on the surface of the body.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: March 11, 2014
    Assignee: Kennametal Inc.
    Inventors: Abdelhakim Belhadjhamida, Joseph Overton, James B. C. Wu
  • Publication number: 20140057122
    Abstract: An alloy for imparting wear- and corrosion-resistance to a metal component wherein the alloy comprises between about 0.12 wt % and about 0.7 wt % C, between about 20 wt % and about 30 wt % Cr, between about 10 wt % and about 15 wt % Mo, between about 1 wt % and about 4 wt % Ni, and balance of Co.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 27, 2014
    Applicant: KENNAMETAL INC.
    Inventors: James B. C. Wu, Volker Hellinger, Matthew X. Yao
  • Patent number: 8609196
    Abstract: A wear- and corrosion-resistance coating over a metal substrate having a first-layer carbide material, a second metal coating layer over the first metal coating layer, and a surface metal coating layer over the second metal coating layer; and thermal spray method for applying the coating.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: December 17, 2013
    Assignee: Kennametal Inc.
    Inventors: David A. Lee, Heidi Lynette de Villiers-Lovelock, Danie Jacobus Dewet, James B. C. Wu
  • Patent number: 8603264
    Abstract: A method for imparting wear- and corrosion-resistance to a metal component comprising overlaying the component with a ductile Co-based alloy comprising between about 0.12 wt % and about 0.7 wt % C, between about 20 wt % and about 30 wt % Cr, between about 10 wt % and about 15 wt % Mo, between about 1 wt % and about 4 wt % Ni, and balance of Co, without forming cracks during the alloy's solidification.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: December 10, 2013
    Assignee: Kennametal Inc.
    Inventors: James B. C. Wu, Volker Hellinger, Matthew X. Yao
  • Patent number: 8383203
    Abstract: A method of imparting high-temperature, degradation resistance to a component associated with an internal combustion engine involving applying a metal slurry comprising a Co-based metallic composition, a binder, and a solvent to a surface of the component, and sintering the Co-based metallic composition to form a substantially continuous Co-based alloy coating on the surface of the body. An internal combustion engine component comprising a metallic substrate and a Co-based metallic coating thereon which has a thickness between about 100 and about 1000 microns.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: February 26, 2013
    Assignee: Kennametal Inc.
    Inventors: Abdelhakim Belhadjhamida, Joseph Overton, James B. C. Wu
  • Publication number: 20100316883
    Abstract: A wear- and corrosion-resistance coating over a metal substrate having a first-layer carbide material, a second metal coating layer over the first metal coating layer, and a surface metal coating layer over the second metal coating layer; and thermal spray method for applying the coating.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 16, 2010
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: David A. Lee, Heidi Lynette de Villiers-Lovelock, Danie Jacobus Dewet, James B. C. Wu
  • Publication number: 20100209286
    Abstract: A wear- and corrosion-resistant alloy, and related application method, where the alloy has by approximate weight %, C 0.12-0.7, Cr 20-30, Mo 7-15, Ni 1-4, and Co balance, wherein the alloy further contains one or more carbide-former elements from the group consisting of Ti, Zr, Hf, V, Nb, and Ta in a cumulative concentration to stoichiometrically offset between about 30% and about 90% of the C in the alloy.
    Type: Application
    Filed: July 11, 2008
    Publication date: August 19, 2010
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: James B. C. Wu, Matthew X. Yao
  • Patent number: 7572408
    Abstract: A Co—Mo—Cr Co-based alloy and overlay for wear and corrosion applications. The Mo:Si ratio is between about 15:1 and about 22:1 for enhanced ductility with a Laves phase.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: August 11, 2009
    Assignee: Deloro Stellite Holdings Corporation
    Inventors: James B. C. Wu, Matthew X. Yao
  • Publication number: 20090032501
    Abstract: A material blend for deposition of an abrasion-resistant overlay onto a metal substrate comprising a first metal particle component, a second metal particle component, and a carbide particle component and a method for the application thereof, wherein the overlay process conditions and the homogeneity of tungsten carbide distribution in the overlay are improved.
    Type: Application
    Filed: August 11, 2006
    Publication date: February 5, 2009
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: Thomas Swingley, Kevin Luer, Roderick Webber, James B. C. Wu
  • Publication number: 20080193675
    Abstract: A method for imparting wear- and corrosion-resistance to a metal component comprising overlaying the component with a ductile Co-based alloy comprising between about 0.12 wt % and about 0.7 wt % C, between about 20 wt % and about 30 wt % Cr, between about 10 wt % and about 15 wt % Mo, between about 1 wt % and about 4 wt % Ni, and balance of Co, without forming cracks during the alloy's solidification.
    Type: Application
    Filed: May 30, 2007
    Publication date: August 14, 2008
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: James B.C. Wu, Volker Hellinger, Matthew X. Yao
  • Patent number: 6863990
    Abstract: Enhancing wear and corrosion resistance of an industrial component by depositing a Ni-based alloy coating having a thickness of at least about 50 microns onto a surface of the industrial component by high velocity oxyfuel propulsion of a Ni-based alloy powder containing a) Cr, b) from about 15 to about 25 wt % Mo, c) no more than about 1 wt % Fe, and d) no more than about 1 wt % elements having an atomic number greater than 42. A Ni-based alloy powder for HVOF deposition containing a) Cr, b) from about 15 to about 25 wt % Mo, c) no more than about 1 wt % Fe, and d) no more than about 1 wt % elements having an atomic number greater than 42. A Ni-based coating on an industrial component having enhanced corrosion and wear resistance.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: March 8, 2005
    Assignee: Deloro Stellite Holdings Corporation
    Inventors: James B. C. Wu, Matthew X. Yao
  • Patent number: 6852176
    Abstract: A Co-based alloy comprising 13-16 wt % Cr, 20-30 wt % Mo, 2.2-3.2 wt % Si, and balance Co, with a Cr:Si ratio of between about 4.5 and about 7.5, a Mo:Si ratio of between about 9 and about 15, wear resistance, and corrosion resistance in both oxidizing and reducing acids.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: February 8, 2005
    Assignee: Deloro Stellite Holdings Corporation
    Inventors: James B. C. Wu, Matthew X. Yao
  • Publication number: 20040219354
    Abstract: Enhancing wear and corrosion resistance of an industrial component by depositing a Ni-based alloy coating having a thickness of at least about 50 microns onto a surface of the industrial component by high velocity oxyfuel propulsion of a Ni-based alloy powder containing a) Cr, b) from about 15 to about 25 wt % Mo, c) no more than about 1 wt % Fe, and d) no more than about 1 wt % elements having an atomic number greater than 42. A Ni-based alloy powder for HVOF deposition containing a) Cr, b) from about 15 to about 25 wt % Mo, c) no more than about 1 wt % Fe, and d) no more than about 1 wt % elements having an atomic number greater than 42. A Ni-based coating on an industrial component having enhanced corrosion and wear resistance.
    Type: Application
    Filed: May 2, 2003
    Publication date: November 4, 2004
    Applicant: Deloro Stellite Company
    Inventors: James B. C. Wu, Matthew X. Yao