Patents by Inventor James B. Mattzela

James B. Mattzela has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117495
    Abstract: Cold thermal chemical vapor deposition coatings, articles, and processes are disclosed. Specifically, a cold thermal chemical vapor deposition process includes positioning an article, heating a precursor gas to at least a decomposition temperature of the precursor gas to produce a deposition gas, introducing the deposition gas to a coating vessel, and depositing a coating from the deposition gas onto the article within the coating vessel. The article remains at a temperature below the decomposition temperature throughout the introducing and depositing of the deposition gas. The coating on the article has a gradient formed by the depositing of the coating having no flow for a period of time. The coated article includes a thermally-sensitive substrate (the thermally-sensitive substrate capable of being modified by a temperature of 300 degrees Celsius) and a coating the thermally-sensitive substrate.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 11, 2024
    Inventors: Geoffrey K. WHITE, Nicholas P. DESKEVICH, James B. MATTZELA, Gary A. BARONE, David A. SMITH, Pierre A. LECLAIR, Min YUAN, Jesse BISCHOF
  • Publication number: 20230383126
    Abstract: Amorphous coatings and coated articles having amorphous coatings are disclosed. The amorphous coating comprises a first layer and a second layer, the first layer being proximal to a metal substate compared to the second layer, the second layer being distal from the metal substrate compared to the first layer. The first layer and the second layer comprise carbon, hydrogen, and silicon. The first layer further comprises oxygen.
    Type: Application
    Filed: June 8, 2023
    Publication date: November 30, 2023
    Inventors: David A. SMITH, James B. MATTZELA, Paul H. SILVIS, Gary A. BARONE, Martin E. HIGGINS
  • Patent number: 11807777
    Abstract: Amorphous coatings and coated articles having amorphous coatings are disclosed. The amorphous coating comprises a first layer and a second layer, the first layer being proximal to a metal substrate compared to the second layer, the second layer being distal from the metal substrate compared to the first layer. The first layer and the second layer comprise carbon, hydrogen, and silicon. The first layer further comprises oxygen.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: November 7, 2023
    Assignee: Silcotek Corp.
    Inventors: David A. Smith, James B. Mattzela, Paul H. Silvis, Gary A. Barone, Martin E. Higgins
  • Publication number: 20220186040
    Abstract: Industrial equipment articles and thermal chemical vapor coated articles are disclosed. The articles include a coating on a substrate of the industrial equipment article, the coating including silicon, carbon, and hydrogen. The industrial equipment article requires resistance to protein adsorption. The industrial equipment article was heated during application of the coating to a temperature of between 300 degrees C. and 600 degrees C. The thermal chemical vapor coated article includes a coating on the thermal chemical vapor coated article, the coating formed by thermal decomposition, oxidation, then functionalization. The thermal chemical vapor coated article is industrial equipment requiring resistance to protein adsorption. The coating is resistant to the protein adsorption and is on a substrate heated during the thermal decomposition.
    Type: Application
    Filed: March 2, 2022
    Publication date: June 16, 2022
    Inventors: David A. SMITH, Min YUAN, James B. MATTZELA, Paul H. SILVIS
  • Patent number: 11292924
    Abstract: A coated article is disclosed. The article includes a coating formed by thermal decomposition, oxidation then functionalization. The article is configured for a marine environment, the marine environment including fouling features. The coating is resistant to the fouling features. Additionally or alternatively, the article is a medical device configured for a protein-containing environment, the protein-containing environment including protein adsorption features. The coating is resistant to the protein adsorption features.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: April 5, 2022
    Assignee: Silcotek Corp.
    Inventors: David A. Smith, Min Yuan, James B. Mattzela, Paul H. Silvis
  • Patent number: 11261524
    Abstract: Chemical vapor deposition processes and coated articles are disclosed. The process includes a first introducing of a first amount of silane to the enclosed chamber, the first amount of the silane remaining within the enclosed chamber for a first period of time, a first decomposing of the first amount of the silane during at least a portion of the first period of time, a second introducing of a second amount of the silane to the enclosed chamber, the second amount of the silane remaining within the enclosed chamber for a second period of time, and a second decomposing of the second amount of the silane during at least a portion of the second period of time. The process is devoid of inert gas purging between the first decomposing and the second introducing and/or produces a chemical vapor deposition coating devoid of hydrogen bubbles.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 1, 2022
    Assignee: SilcoTek Corp.
    Inventors: Thomas F. Vezza, James B. Mattzela, Gary A. Barone, Jesse Bischof, David A. Smith
  • Patent number: 10876206
    Abstract: Thermal chemical vapor deposition coated articles and thermal chemical vapor deposition processes are disclosed. The thermal chemical vapor deposition coated article includes a substrate and a coating on the substrate, the coating having multiple layers and being positioned on regions of the thermal chemical vapor deposition coated article that are unable to be concurrently coated through line-of-sight techniques. The coating has a concentration of particulate from gas phase nucleation, per 100 square micrometers, of fewer than 6 particles having a dimension of greater than 0.5 micrometers. The thermal chemical vapor deposition process includes introducing a multiple aliquot of a silicon-containing precursor to the enclosed vessel with intermediate gaseous soaking to produce the coated article.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: December 29, 2020
    Assignee: SILCOTEK CORP.
    Inventors: Thomas F. Vezza, James B. Mattzela, Gary A. Barone, William David Grove, Paul H. Silvis
  • Patent number: 10851455
    Abstract: Surfaces, articles, and processes having silicon-nitride-containing thermal chemical vapor deposition coating are disclosed. A process includes producing a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. Flow into and from the chamber is restricted or halted during the producing of the silicon-nitride-containing thermal chemical vapor deposition coating on the surface. A surface includes a silicon-nitride-containing thermal chemical vapor deposition coating. The surface has at least a concealed portion that is obstructed from view. An article includes a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. The surface has at least a concealed portion that is obstructed from view.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: December 1, 2020
    Assignee: SilcoTek Corp.
    Inventors: Min Yuan, James B. Mattzela, David A. Smith
  • Patent number: 10731247
    Abstract: The present invention relates to a coated article. The coated article includes a first layer, a second layer, and a diffusion region between the first layer and the second layer. The first layer has a first atomic concentration of C, a first atomic concentration of Si, and a first atomic concentration of O. The second layer has a first atomic concentration of Fe, a first atomic concentration of Cr, and a first atomic concentration of Ni. The diffusion region has a second atomic concentration of the C, a second atomic concentration of the Si, a second atomic concentration of the O, a second atomic concentration of the Fe, a second atomic concentration of the Cr, and a second atomic concentration of the Ni. All of the atomic concentrations are based upon Auger Electron Spectroscopy.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: August 4, 2020
    Assignee: SILCOTEK CORP.
    Inventors: David A. Smith, James B. Mattzela, Paul H. Silvis, Gary A. Barone
  • Publication number: 20200190336
    Abstract: Amorphous coatings and coated articles having amorphous coatings are disclosed. The amorphous coating comprises a first layer and a second layer, the first layer being proximal to a metal substrate compared to the second layer, the second layer being distal from the metal substrate compared to the first layer. The first layer and the second layer comprise carbon, hydrogen, and silicon. The first layer further comprises oxygen.
    Type: Application
    Filed: February 26, 2020
    Publication date: June 18, 2020
    Inventors: David A. SMITH, James B. Mattzela, Paul H. Silvis, Gary A. Barone, Martin E. Higgins
  • Patent number: 10604660
    Abstract: A wear coating is disclosed that includes a layer treated by a trifunctional organosilane. An article is also disclosed, the article having a surface to which the wear coating is applied. A method of applying the wear coating is also disclosed. In some embodiments, the organosilane is trimethylsilane and the wear coating is applied by chemical vapor deposition, followed by heat treating the wear coating in the presence of the trimethylsilane.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: March 31, 2020
    Assignee: SILCOTEK CORP.
    Inventors: David A. Smith, James B. Mattzela, Paul H. Silvis, Gary A. Barone, Martin E. Higgins
  • Patent number: 10487402
    Abstract: Coated articles are disclosed. One embodiment of a coated article includes a substrate capable of being subjected to corrosion and a deposited coating on the substrate. The deposited coating has silicon with the substrate resisting corrosion with the deposited coating on the substrate when exposed to 15% NaClO by a rate of at least 5% greater than the corrosion rate of a coating applied with the same process but without introducing the deposition gas at the sub-decomposition temperature and/or the substrate with the deposited coating having a 15% NaClO corrosion rate of between 0 and 3 mils per year.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: November 26, 2019
    Assignee: SILCOTEK CORP
    Inventors: Min Yuan, David A. Smith, Paul H. Silvis, James B. Mattzela
  • Publication number: 20190309414
    Abstract: Chemical vapor deposition processes and coated articles are disclosed. The process includes a first introducing of a first amount of silane to the enclosed chamber, the first amount of the silane remaining within the enclosed chamber for a first period of time, a first decomposing of the first amount of the silane during at least a portion of the first period of time, a second introducing of a second amount of the silane to the enclosed chamber, the second amount of the silane remaining within the enclosed chamber for a second period of time, and a second decomposing of the second amount of the silane during at least a portion of the second period of time. The process is devoid of inert gas purging between the first decomposing and the second introducing and/or produces a chemical vapor deposition coating devoid of hydrogen bubbles.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 10, 2019
    Inventors: Thomas F. VEZZA, James B. MATTZELA, Gary A. BARONE, Jesse BISCHOF, David A. SMITH
  • Patent number: 10323321
    Abstract: Thermal chemical vapor deposition processes and coated articles are disclosed. The coated article includes a surface having a surface impurity and a coating on the surface formed by thermally reacting a gas. In comparison to a comparable coating without the surface impurity, the coating on the surface has substantially the same level of adhesion, corrosion resistance over 24 hours in 6M HCl, corrosion resistance over 72 hours in NaClO, and electrochemical impedance spectroscopy results. Additionally or alternatively, the surface impurity has properties that reduce or eliminate adhesion of a comparative coating produced by decomposition of silane on a comparative surface following exposure of the surface to a temperature.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: June 18, 2019
    Assignee: SILCOTEK CORP.
    Inventors: Min Yuan, Paul H. Silvis, James B. Mattzela
  • Patent number: 10316408
    Abstract: A delivery device, manufacturing system, and process of manufacturing are disclosed. The delivery device includes a feed tube and a chemical vapor deposition coating applied over an inner surface of the feed tube, the chemical vapor deposition coating being formed from decomposition of dimethylsilane. The manufacturing system includes the delivery device and a chamber in selective fluid communication with the delivery device. The process of manufacturing uses the manufacturing system to produce an article.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: June 11, 2019
    Assignees: SilcoTek Corp., AIXTRON SE
    Inventors: David A. Smith, Min Yuan, James B. Mattzela, Olaf Martin Wurzinger, Dietmar Keiper, Anna Katharina Haab
  • Publication number: 20190169750
    Abstract: Coated articles are disclosed. One embodiment of a coated article includes a substrate capable of being subjected to corrosion and a deposited coating on the substrate. The deposited coating has silicon with the substrate resisting corrosion with the deposited coating on the substrate when exposed to 15% NaClO by a rate of at least 5% greater than the corrosion rate of a coating applied with the same process but without introducing the deposition gas at the sub-decomposition temperature and/or the substrate with the deposited coating having a 15% NaClO corrosion rate of between 0 and 3 mils per year.
    Type: Application
    Filed: February 13, 2018
    Publication date: June 6, 2019
    Inventors: Min YUAN, David A. SMITH, Paul H. SILVIS, James B. MATTZELA
  • Publication number: 20190032201
    Abstract: The present invention relates to a coated article. The coated article includes a first layer, a second layer, and a diffusion region between the first layer and the second layer. The first layer has a first atomic concentration of C, a first atomic concentration of Si, and a first atomic concentration of O. The second layer has a first atomic concentration of Fe, a first atomic concentration of Cr, and a first atomic concentration of Ni. The diffusion region has a second atomic concentration of the C, a second atomic concentration of the Si, a second atomic concentration of the O, a second atomic concentration of the Fe, a second atomic concentration of the Cr, and a second atomic concentration of the Ni. All of the atomic concentrations are based upon Auger Electron Spectroscopy.
    Type: Application
    Filed: August 22, 2017
    Publication date: January 31, 2019
    Inventors: David A. SMITH, James B. MATTZELA, Paul H. SILVIS, Gary A. BARONE
  • Publication number: 20190003044
    Abstract: Surfaces, articles, and processes having silicon-nitride-containing thermal chemical vapor deposition coating are disclosed. A process includes producing a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. Flow into and from the chamber is restricted or halted during the producing of the silicon-nitride-containing thermal chemical vapor deposition coating on the surface. A surface includes a silicon-nitride-containing thermal chemical vapor deposition coating. The surface has at least a concealed portion that is obstructed from view. An article includes a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. The surface has at least a concealed portion that is obstructed from view.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Inventors: Min YUAN, James B. MATTZELA, David A. SMITH
  • Patent number: 10087521
    Abstract: Surfaces, articles, and processes having silicon-nitride-containing thermal chemical vapor deposition coating are disclosed. A process includes producing a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. Flow into and from the chamber is restricted or halted during the producing of the silicon-nitride-containing thermal chemical vapor deposition coating on the surface. A surface includes a silicon-nitride-containing thermal chemical vapor deposition coating. The surface has at least a concealed portion that is obstructed from view. An article includes a silicon-nitride-containing thermal chemical vapor deposition coating on a surface within a chamber. The surface has at least a concealed portion that is obstructed from view.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: October 2, 2018
    Assignee: SILCOTEK CORP.
    Inventors: Min Yuan, James B. Mattzela, David A. Smith
  • Publication number: 20180258529
    Abstract: Thermal chemical vapor deposition coated articles and thermal chemical vapor deposition processes are disclosed. The thermal chemical vapor deposition coated article includes a substrate and a coating on the substrate, the coating having multiple layers and being positioned on regions of the thermal chemical vapor deposition coated article that are unable to be concurrently coated through line-of-sight techniques. The coating has a concentration of particulate from gas phase nucleation, per 100 square micrometers, of fewer than 6 particles having a dimension of greater than 0.5 micrometers. The thermal chemical vapor deposition process includes introducing a multiple aliquot of a silicon-containing precursor to the enclosed vessel with intermediate gaseous soaking to produce the coated article.
    Type: Application
    Filed: August 31, 2016
    Publication date: September 13, 2018
    Inventors: Thomas F. VEZZA, James B. MATTZELA, Gary A. BARONE, William David GROVE, Paul H. SILVIS