Patents by Inventor James Beall

James Beall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384757
    Abstract: Techniques for detecting suspicious performance of a throttling control valve (also referred to herein as a “valve”) in a process plant are described herein. For each of N time periods, a computing device determines and analyzes process parameter values for process parameters related to a valve to determine a status of the valve for the time period. The computing device compares the valve statuses over the N time periods to determine whether the valve is operating well for at least a threshold portion of at least a subset of the N time periods. In response to determining that the valve is not operating well for at least the threshold portion of at least the subset of the N time periods, the computing device determines that the valve is suspected of performing poorly, and provides an indication of the suspect valve to a user interface for display to a user.
    Type: Application
    Filed: May 25, 2022
    Publication date: November 30, 2023
    Inventors: Shu Xu, James Beall, Mark J. Nixon
  • Patent number: 11467543
    Abstract: A method for designing and tuning a PID process controller includes approximating a process as a second order process but in a manner that includes the effects or characteristics introduced by various different devices in the I/O network, and using a lambda tuning method to determine tuning parameters or coefficients for the PID controller. The enhanced controller design and tuning method provides a systematic manner of achieving performance improvement of PID controllers within a process control system and is effective at overcoming challenges arising from signal aliasing, the use of anti-aliasing filtering and the effects of different I/O settings of both traditional and advanced I/O marshalling architectures.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: October 11, 2022
    Assignee: FISHER-ROSEMOUNT SYSTEMS, INC.
    Inventors: Shu Xu, Mark J. Nixon, James Beall, Terrence L. Blevins, Todd Maras
  • Publication number: 20210088982
    Abstract: A method for designing and tuning a PID process controller includes approximating a process as a second order process but in a manner that includes the effects or characteristics introduced by various different devices in the I/O network, and using a lambda tuning method to determine tuning parameters or coefficients for the PID controller. The enhanced controller design and tuning method provides a systematic manner of achieving performance improvement of PID controllers within a process control system and is effective at overcoming challenges arising from signal aliasing, the use of anti-aliasing filtering and the effects of different I/O settings of both traditional and advanced I/O marshalling architectures.
    Type: Application
    Filed: September 20, 2019
    Publication date: March 25, 2021
    Inventors: Shu Xu, Mark J. Nixon, James Beall, Terrence L. Blevins, Todd Maras
  • Publication number: 20060019659
    Abstract: A system and method for roaming between networks include determining a presence of a mobile unit by determining when the mobile unit leaves a first network and enters a second network, and routing one or more calls based on the presence of the mobile unit by offloading the one or more calls to the second network into which the mobile unit roams.
    Type: Application
    Filed: July 5, 2005
    Publication date: January 26, 2006
    Inventors: Jonathan Rosenberg, James Beall
  • Publication number: 20020086323
    Abstract: Methods, employing a nucleotide integrase, for cleaving single-stranded RNA substrates, single-stranded DNA substrates, and double-stranded DNA substrates at specific sites and for inserting a nucleic acid molecule into the cleaved substrate are provided. One method uses a nucleotide integrase to cleave one strand of a double-stranded DNA substrate. The method comprises the steps of: providing an isolated nucleotide integrase comprising a group II intron RNA having two hybridizing sequences for hybridizing with two intron RNA binding sequences on the top strand of the DNA substrate, and a group I-intron encoded protein which binds to a first sequence element of the substrate; and reacting the nucleotide integrase with the double-stranded DNA substrate to permit the nucleotide integrase to cleave the top strand of the DNA substrate and to insert the group II intron RNA into the cleavage site.
    Type: Application
    Filed: October 22, 2001
    Publication date: July 4, 2002
    Inventors: Alan M. Lambowitz, Steven Zimmerly, Huatao Guo, Georg Mohr, Clifford James Beall
  • Patent number: 6306596
    Abstract: Methods, employing a nucleotide integrase, for cleaving single-stranded RNA substrates, single-stranded DNA substrates, and double-stranded DNA substrates at specific sites and for inserting a nucleic acid molecule into the cleaved substrate are provided. One method uses a nucleotide integrase to cleave one strand of a double-stranded DNA substrate. The method comprises the steps of: providing an isolated nucleotide integrase comprising a group II intron RNA having two hybridizing sequences for hybridizing with two intron RNA binding sequences on the top strand of the DNA substrate, and a group II-intron encoded protein which binds to a first sequence element of the substrate; and reacting the nucleotide integrase with the double-stranded DNA substrate to permit the nucleotide integrase to cleave the top strand of the DNA substrate and to insert the group II intron RNA into the cleavage site.
    Type: Grant
    Filed: February 25, 1999
    Date of Patent: October 23, 2001
    Assignee: The Ohio State University Research Foundation
    Inventors: Allen M. Lambowitz, Steven Zimmerly, Huatao Guo, Georg Mohr, Clifford James Beall
  • Patent number: 6027895
    Abstract: The present invention provides new methods, employing a nucleotide integrase, for cleaving single-stranded RNA substrates, single-stranded DNA substrates, and double- stranded DNA substrates at specific sites and for inserting a nucleic acid molecule into the cleaved substrate. One method uses a nucleotide integrase to cleave one strand of a double-stranded DNA substrate. The method comprises the steps of: providing a nucleotide integrase comprising a group II intron RNA having two hybridizing sequences that are capable of hybridizing with two intron RNA binding sequences on the one strand of the DNA substrate, and a group II-intron encoded protein which binds to a first sequence element of the substrate; and reacting the nucleotide integrase with the double-stranded DNA substrate under conditions that permit the nucleotide integrase to cleave the one strand of the DNA substrate and to insert the group II intron RNA into the cleavage site.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: February 22, 2000
    Assignee: The Ohio State University Research Foundation
    Inventors: Allen M. Lambowitz, Steven Zimmerly, Huatao Gau, Georg Mohr, Clifford James Beall
  • Patent number: 6001608
    Abstract: Methods for preparing nucleotide integrases are provided. The nucleotide integrases are prepared by combining in vitro an excised, group II intron RNA, referred to hereinafter as "exogenous RNA", with a group II intron-encoded protein. The exogenous RNA is prepared by in vitro transcription of a DNA molecule which comprises a group II intron sequence. In one embodiment, the group II intron-encoded protein is made by introducing into a host cell a DNA molecule that comprises at least the open reading frame sequence of a group II intron and then expressing the open reading frame sequence in the host cell. The DNA molecule may comprise the open reading frame sequence operably linked to a promoter, preferably an inducible promoter. Thereafter, the cell is fractionated and the protein is recovered and combined in vitro with the exogenous RNA to provide RNP particles having nucleotide integrase activity.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: December 14, 1999
    Assignee: The Ohio State Research Foundation
    Inventors: Alan M. Lambowitz, Georg Mohr, Roland Saldanha, Manabu Matsuura, Clifford James Beall, Jiam Yang, Steven Zimmerly, Huatao Guo