Patents by Inventor James Beausang

James Beausang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6449755
    Abstract: A computerized method and system for automatically extracting an IEEE 1149.1 standard design from a netlist and performing compliance checking. The present invention receives the TAP (test access port) description and compliance enable ports of a netlist. The TAP controller is extracted and its state ports are identified, referenced in a boundary scan design database (BSDD) and its states are verified. The TAP controller is controlled so that the instruction register is located and referenced in the BSDD. The TAP controller is controlled so that the bypass register is found and the BSDD is updated. The TAP controller is controlled so that the shift and update cells of the boundary scan register (BSR) are found, the control, input and output BSR cells are characterized and the BSDD is updated. Primary input and output information is also inferred and the device_ID register is found. Frontier pins are used to locate signatures of the remaining instructions and their test data registers are found.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: September 10, 2002
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Harbinder Singh
  • Patent number: 6141790
    Abstract: A computerized method and system for automatically extracting an IEEE 1149.1 standard design from a netlist and performing compliance checking. The present invention receives the TAP (test access port) description and compliance enable ports of a netlist. The TAP controller is extracted and its state ports are identified, referenced in a boundary scan design database (BSDD) and its states are verified. The TAP controller is controlled so that the instruction register is located and referenced in the BSDD. The TAP controller is controlled so that the bypass register is found and the BSDD is updated. The TAP controller is controlled so that the shift and update cells of the boundary scan register (BSR) are found, the control, input and output BSR cells are characterized and the BSDD is updated. Primary input and output information is also inferred and the device.sub.-- ID register is found. Frontier pins are used to locate signatures of the remaining instructions and their test data registers are found.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: October 31, 2000
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Harbinder Singh
  • Patent number: 6106568
    Abstract: A system and method for architecting design for test circuitry (e.g., scan architecting) within an integrated circuit design having subdesigns (e.g., modules). The novel system contains a default operational mode (no user specification) and an operational mode based on user specifications; within either mode, the system recognizes and allows definition of subdesign scan chains which can be linked together alone or with other scan elements to architect complex scan chains (e.g., top level scan chains). The system includes specification, analysis, synthesis and reporting processes which can be used in an IC design having a hierarchical structure including modules. The specification process accesses a design database and a script file and allows a user to define global scan properties (scan style, number of chains, etc.), properties of a particular scan chain (membership, name, etc.), test signals (scan-in, scan-out, scan-enable, etc.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 22, 2000
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Chris Ellingham, Markus F. Robinson, Robert Walker
  • Patent number: 6067650
    Abstract: A computer implemented process and system for effectively determining a set of sequential cells with a integrated circuit design that can be scan replaced (e.g. for design for test applications) to offer significant testability while still maintaining specified optimization (e.g., area and/or timing) constraints that are applicable to the design. The novel system selects sequential cells for scan replacement that offer best testability contribution while not selecting sequential cells for scan replacement that do not offer much testability contribution and/or are part of most critical paths within the design. The novel system is composed of a subtractive method and an additive method. The subtractive method inputs a fully scan replaced netlist (e.g., the sequential cells are scan replaced) that does not meet determined optimization constraints. The novel subtractive system unscans selected cells until the area and/or timing constraints are met. A flag indicates whether nor not timing is considered.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: May 23, 2000
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Kenneth Wagner, Robert Walker
  • Patent number: 6012155
    Abstract: A computerized method and system for automatically extracting an IEEE 1149.1 standard design from a netlist and performing compliance checking. The present invention receives the TAP (test access port) description and compliance enable ports of a netlist. The TAP controller is extracted and its state ports are identified, referenced in a boundary scan design database (BSDD) and its states are verified. The TAP controller is controlled so that the instruction register is located and referenced in the BSDD. The TAP controller is controlled so that the bypass register is found and the BSDD is updated. The TAP controller is controlled so that the shift and update cells of the boundary scan register (BSR) are found, the control, input and output BSR cells are characterized and the BSDD is updated. Primary input and output information is also inferred and the device.sub.-- ID register is found. Frontier pins are used to locate signatures of the remaining instructions and their test data registers are found.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: January 4, 2000
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Harbinder Singh
  • Patent number: 5949692
    Abstract: A system and method for architecting design for test circuitry (e.g., scan architecting) within an integrated circuit design having subdesigns (e.g., modules). The novel system contains a default operational mode (no user specification) and an operational mode based on user specifications; within either mode, the system recognizes and allows definition of subdesign scan chains which can be linked together alone or with other scan elements to architect complex scan chains (e.g., top level scan chains). The system includes specification, analysis, synthesis and reporting processes which can be used in an IC design having a hierarchical structure including modules. The specification process accesses a design database and a script file and allows a user to define global scan properties (scan style, number of chains, etc.), properties of a particular scan chain (membership, name, etc.), test signals (scan-in, scan-out, scan-enable, etc.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: September 7, 1999
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Chris Ellingham, Markus F. Robinson, Robert Walker
  • Patent number: 5903466
    Abstract: A computer implemented process and system for providing a scan insertion process having a reduced set of constraint driven compiler optimizations that provide an efficient and effective optimization for design for test implementations. The present invention includes a three tiered effort performance optimization process within a scan insertion process; a first tier operates to perform a set of optimizations (size design) only on elements of the design added for design for test (DFT). The second tier offers the first tier and performs the size design optimizations across all of the design while the third tier offers the second tier with sequential optimizations, circuit size downs, and another size design. Each higher user-selectable tier offers more complex optimizations and consumes additional processing time. An option to perform design constraints optimization (max fanout, max signal transition, and max capacitance) is also available.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: May 11, 1999
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Chris Ellingham, Robert Walker
  • Patent number: 5831868
    Abstract: A computer implemented process and system for providing a test ready (TR) compiler with specific information regarding the impact of added scannable cells and resources on its mission mode design. In so doing, the TR compiler optimizes more effectively for added test resources (e.g., scannable cells and other scan routing resources) so that predetermined performance and design related constraints of the mission mode design are maintained. The TR compiler translates generic sequential cells into technology dependent non-scan cells. In the TR compiler, during replacement, scannable memory cells are used in place of these non-scan memory cells specified within the mission mode circuitry. In this way, the TR compiler is informed of the characteristics of the scannable memory cells during optimization. For test, the scannable memory cells are chained to each other to form chain chains of sequential cells.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: November 3, 1998
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Robert Walker
  • Patent number: 5828579
    Abstract: A system and method for architecting design for test circuitry (e.g., scan architecting) within an integrated circuit design having subdesigns (e.g., modules). The novel system environment contains a default operational mode (no user specification) and an operational mode based on user specifications; within either mode, the system recognizes and allows definition of subdesign scan chains which can be linked together alone or with other scan elements to architect complex scan chains (e.g., top level scan chains). Individual scan chains are constructed using user defined scan segments and detected inferred segments. Inferred segments are automatically detected if present within IC module designs. When integrated into larger scan chains, the user defined scan segments and the inferred scan segments are not modified during linking. The system includes specification, analysis, synthesis and reporting processes which can be used in an IC design having a hierarchical structure including modules.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: October 27, 1998
    Assignee: Synopsys, Inc.
    Inventor: James Beausang
  • Patent number: 5703789
    Abstract: A computer implemented process and system for providing a test ready (TR) compiler with specific information regarding the impact of added scannable cells and resources on its mission mode design. In so doing, the TR compiler optimizes more effectively for added test resources (e.g., scannable cells and other scan routing resources) so that predetermined performance and design related constraints of the mission mode design are maintained. The TR compiler translates generic sequential cells into technology dependent non-scan cells. In the TR compiler, during replacement, scannable memory cells are used in place of these non-scan memory cells specified within the mission mode circuitry. In this way, the TR compiler is informed of the characteristics of the scannable memory cells during optimization. For test, the scannable memory cells are chained to each other to form chain chains of sequential cells.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: December 30, 1997
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Robert Walker
  • Patent number: 5696771
    Abstract: A computer implemented process and system for effectively determining a set of sequential cells with a integrated circuit design that can be scan replaced (e.g. for design for test applications) to offer significant testability while still maintaining specified optimization (e.g., area and/or timing) constraints that are applicable to the design. The novel system selects sequential cells for scan replacement that offer best testability contribution while not selecting sequential cells for scan replacement that do not offer much testability contribution and/or are part of most critical paths within the design. The novel system is composed of a subtractive method and an additive method. The subtractive method inputs a fully scan replaced netlist (e.g., the sequential cells are scan replaced) that does not meet determined optimization constraints. The novel subtractive system unscans selected cells until the area and/or timing constraints are met. A flag indicates whether nor not timing is considered.
    Type: Grant
    Filed: May 17, 1996
    Date of Patent: December 9, 1997
    Assignee: Synopsys, Inc.
    Inventors: James Beausang, Kenneth Wagner, Robert Walker