Patents by Inventor James Bowler Hannon

James Bowler Hannon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11227996
    Abstract: A resistive element in an artificial neural network, the resistive element includes a Silicon-on-insulator (SOI) substrate, and a Silicon layer formed on the Silicon-on-insulator substrate. The Silicon layer includes dopants derived from a thin film dopant layer, and the thin film dopant layer includes a programmed amount of dopant including at least one of Boron and Phosphorus.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 18, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Matthew Warren Copel, James Bowler Hannon, Satoshi Oida
  • Patent number: 11024803
    Abstract: A method of forming a resistive random access memory (RRAM) element, the method includes forming a Silicon layer on an oxide layer, depositing a thin film dopant layer on the Silicon layer, and controlling a concentration of the dopant in the thin film dopant layer.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: June 1, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Matthew Warren Copel, James Bowler Hannon, Satoshi Oida
  • Patent number: 10748059
    Abstract: A resistive element in an electrochemical artificial neural network, includes a transition metal oxide thin film forming a working electrode, a pair of first electrodes connected to the working electrode, and a reference electrode for electrochemical doping of the working electrode. The biasing of the pair of first electrodes with respect to the reference electrode according to a determination of conductivity between the pair of first electrodes controls the resistance of the working electrode.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 18, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew Warren Copel, James Bowler Hannon, Satoshi Oida, John Jacob Yurkas
  • Publication number: 20190198761
    Abstract: A resistive element in an artificial neural network, the resistive element includes a Silicon-on-insulator (SOI) substrate, and a Silicon layer formed on the Silicon-on-insulator substrate. The Silicon layer includes dopants derived from a thin film dopant layer, and the thin film dopant layer includes a programmed amount of dopant including at least one of Boron and Phosphorus.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Matthew Warren Copel, James Bowler Hannon, Satoshi Oida
  • Publication number: 20190198762
    Abstract: A method of forming a resistive random access memory (RRAM) element, the method includes forming a Silicon layer on an oxide layer, depositing a thin film dopant layer on the Silicon layer, and controlling a concentration of the dopant in the thin film dopant layer.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Applicant: International Business Machines Corporation
    Inventors: Ali AFZALI-ARDAKANI, Matthew Warren COPEL, James Bowler HANNON, Satoshi OIDA
  • Patent number: 10256405
    Abstract: A method of forming semiconductor elements in an artificial neural network, the method including forming a substrate including an oxide layer, forming a Silicon layer on the oxide layer, depositing a thin film dopant layer on the Silicon layer, and controlling a concentration of the dopant in the thin film dopant layer.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: April 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Matthew Warren Copel, James Bowler Hannon, Satoshi Oida
  • Publication number: 20180293487
    Abstract: A resistive element in an electrochemical artificial neural network, includes a transition metal oxide thin film forming a working electrode, a pair of first electrodes connected to the working electrode, and a reference electrode for electrochemical doping of the working electrode. The biasing of the pair of first electrodes with respect to the reference electrode according to a determination of conductivity between the pair of first electrodes controls the resistance of the working electrode.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 11, 2018
    Inventors: Matthew Warren COPEL, James Bowler Hannon, Satoshi Oida, John Jacob Yurkas
  • Publication number: 20180294410
    Abstract: A method of forming semiconductor elements in an artificial neural network, the method including forming a substrate including an oxide layer, forming a Silicon layer on the oxide layer, depositing a thin film dopant layer on the Silicon layer, and controlling a concentration of the dopant in the thin film dopant layer.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 11, 2018
    Inventors: Ali AFZALI-ARDAKANI, Matthew Warren COPEL, James Bowler HANNON, Satoshi OIDA
  • Patent number: 8785911
    Abstract: Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han, James Bowler Hannon, Katherine L. Saenger, George Stojan Tulevski
  • Publication number: 20120326126
    Abstract: Transistor devices having nanoscale material-based channels (e.g., carbon nanotube or graphene channels) and techniques for the fabrication thereof are provided. In one aspect, a transistor device is provided. The transistor device includes a substrate; an insulator on the substrate; a local bottom gate embedded in the insulator, wherein a top surface of the gate is substantially coplanar with a surface of the insulator; a local gate dielectric on the bottom gate; a carbon-based nanostructure material over at least a portion of the local gate dielectric, wherein a portion of the carbon-based nanostructure material serves as a channel of the device; and conductive source and drain contacts to one or more portions of the carbon-based nanostructure material on opposing sides of the channel that serve as source and drain regions of the device.
    Type: Application
    Filed: June 23, 2011
    Publication date: December 27, 2012
    Applicant: International Business Machines Corporation
    Inventors: Zhihong Chen, Aaron Daniel Franklin, Shu-Jen Han, James Bowler Hannon, Katherine L. Saenger, George Stojan Tulevski
  • Patent number: 7951424
    Abstract: The present invention provides a method for the selective placement of carbon nanotubes on a particular surface. In particular, the present invention provides a method in which self-assembled monolayers formed on an unpatterned or patterned metal oxide surface are used to attract or repel carbon nanotubes from a dispersion containing the same. In accordance with the present invention, the carbon nanotubes can be attracted to the self-assembled monolayers so as to be attached to the metal oxide surface, or they can be repelled by the self-assembled monolayers bonding to a predetermined surface other than the metal oxide surface containing the self-assembled monolayers.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: May 31, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, James Bowler Hannon
  • Publication number: 20090117277
    Abstract: The present invention provides a method for the selective placement of carbon nanotubes on a particular surface. In particular, the present invention provides a method in which self-assembled monolayers formed on an unpatterned or patterned metal oxide surface are used to attract or repel carbon nanotubes from a dispersion containing the same. In accordance with the present invention, the carbon nanotubes can be attracted to the self-assembled monolayers so as to be attached to the metal oxide surface, or they can be repelled by the self-assembled monolayers bonding to a predetermined surface other than the metal oxide surface containing the self-assembled monolayers.
    Type: Application
    Filed: May 19, 2008
    Publication date: May 7, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, James Bowler Hannon
  • Patent number: 7504132
    Abstract: The present invention provides a method for the selective placement of carbon nanotubes on a particular surface. In particular, the present invention provides a method in which self-assembled monolayers formed on an unpatterned or patterned metal oxide surface are used to attract or repel carbon nanotubes from a dispersion containing the same. In accordance with the present invention, the carbon nanotubes can be attracted to the self-assembled monolayers so as to be attached to the metal oxide surface, or they can be repelled by the self-assembled monolayers bonding to a predetermined surface other than the metal oxide surface containing the self-assembled monolayers.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: March 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, James Bowler Hannon