Patents by Inventor James Boyd

James Boyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11889282
    Abstract: Provided is a MEMS device. The MEMS device includes: substrate having back cavity passing therethrough; diaphragm connected to the substrate and covers the back cavity, the diaphragm comprises first and second membranes, and accommodating space is formed between the first and second membranes; supports arranged in the accommodating space, and opposite ends of the support are connected to the first and second membranes; counter electrode arranged in the accommodating space, the first and second membranes each include conductive and second regions, the second region is formed by semiconductor material without doping conductive ions. Through design of the first and second membranes as the first region and the second region, respectively, the second region is formed by semiconductor material without doping conductive ions, and the first region is formed by doping conductive ions in the semiconductor material, so that the compliance performance is improved and not at risk of delamination.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: January 30, 2024
    Assignee: AAC Acoustic Technologies (Shenzhen) Co., Ltd.
    Inventors: Euan James Boyd, Scott Lyall Cargill, Yannick Pierre Kervran
  • Patent number: 11856898
    Abstract: An automated mushroom harvesting system for mounting to a vertical mushroom rack comprises a robot having a frame mounted to a vertical carriage assembly. A SCARA arm is slidably mounted to the vertical carriage assembly by a vertical stage, operable to move the SCARA arm along a vertical mast. The SCARA arm moves the end effector in a horizontal plane for harvesting mushrooms, above the surface of the mushroom bed and into and out of the confines of the mushroom rack, and the vertical stage moves the SCARA arm in a vertical direction so as to access the mushrooms in a bed and to access mushroom beds on different levels of the vertical mushroom rack. An end effector having a helically reinforced neck and a graduated elasticity modulus, with a lower elasticity modulus in the neck and a higher elasticity in the cup, is also provided.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: January 2, 2024
    Inventors: Michael Howard Boudreau, Kyran Ashley Lawrence Findlater, James Boyd Gibson, Clark Allan Richardson
  • Publication number: 20230421968
    Abstract: Provided is an electrostatic clutch. The electrostatic clutch includes: multiple arrays of HIN electrodes, a respective pass-through channel being formed between any two arrays of the multiple arrays of HIN electrodes; and multiple arrays of biased electrodes, each array of the multiple arrays of biased electrodes moving back and forth in the respective pass-through channel such that electrostatic force is generated between the multiple arrays of biased electrodes and the multiple arrays of HIN electrodes. Such configuration allows microphone performance over a wide range of atmospheric pressures which is likely expected by applications. This is achieved electrostatically in a purely passive way having advantages over other designs which require complex electronics and active control. Physically decoupling the membrane and sense structure simplifies design of the sense structure as only small AC perturbations of the rotor is considered with no DC changes in rotor position.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Anup Patel, Euan James Boyd, Yannick Pierre Kervran
  • Publication number: 20230421969
    Abstract: Provided is a MEMS condenser microphone, including a base plate, a spacer and a membrane. The membrane is supported above the base plate by the spacer. The base plate, the spacer, and the membrane enclose a vacuum cavity. An end of the membrane close to the vacuum cavity is connected, by means of a connecting rod, to an electrostatic clutch. The electrostatic clutch is connected to a capacitive sensing structure. The microphone has the advantage of allowing microphone performance over a wide range of atmospheric pressures which is likely expected by customers. This is achieved electrostatically in a purely passive way which has an advantage over other designs which require complex electronics and active control. Physically decoupling the membrane and sense structure simplifies the design of the sense structure as only small AC perturbations of the rotor need to be considered with no DC changes in rotor position.
    Type: Application
    Filed: June 28, 2022
    Publication date: December 28, 2023
    Inventors: Anup Patel, Euan James Boyd, Yannick Pierre Kervran
  • Publication number: 20230388711
    Abstract: Provided is a MEMS device. The MEMS device includes: substrate having back cavity passing therethrough; diaphragm connected to the substrate and covers the back cavity, the diaphragm comprises first and second membranes, and accommodating space is formed between the first and second membranes; supports arranged in the accommodating space, and opposite ends of the support are connected to the first and second membranes; counter electrode arranged in the accommodating space, the first and second membranes each include conductive and second regions, the second region is formed by semiconductor material without doping conductive ions. Through design of the first and second membranes as the first region and the second region, respectively, the second region is formed by semiconductor material without doping conductive ions, and the first region is formed by doping conductive ions in the semiconductor material, so that the compliance performance is improved and not at risk of delamination.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Inventors: Euan James Boyd, Scott Lyall Cargill, Yannick Pierre Kervran
  • Publication number: 20230388710
    Abstract: Provided is a MEMS device. The MEMS device includes: substrate having back cavity passing through; diaphragm connected to the substrate and covers the back cavity, the diaphragm comprises first and second membranes, and accommodating space is formed between the first and second membranes; supports arranged in the accommodating space, and opposite ends of the support are connected to the first and second membranes; counter electrode arranged in the accommodating space, the first and second membranes each include conductive and second regions, ventilation slots are annularly spaced on the diaphragm along circumferential direction and penetrate through the first and second membranes, the electrode region extends from center of the first and second membranes toward but does not reach the ventilation slots. Through design of the first and second membranes and the electrode region, sensitivity of the microphone is increased.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Inventors: Euan James Boyd, Scott Lyall Cargill, Yannick Pierre Kervran
  • Publication number: 20230388714
    Abstract: Provided is an MEMS device, including: a base, a rear cavity; a vibrating diaphragm, the vibrating diaphragm including an upper diaphragm and a lower diaphragm, and an accommodation space being formed between the upper and lower diaphragms; a counter electrode arranged in the accommodation space; and supporting members concentrically arranged and spaced apart. The supporting members are arranged between the upper and lower diaphragms and are spaced apart from the counter electrode, two opposite ends of each supporting member are connected to the upper and lower diaphragms, and at least one of the supporting members is provided with first cavities. An upper ventilation hole and a lower ventilation hole are respectively formed at a position of the upper diaphragm and a position of the lower diaphragm corresponding to one of the first cavities; and the upper ventilation hole, the first cavity and the lower ventilation hole communicate with each other.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 30, 2023
    Inventors: Euan James Boyd, Scott Lyall Cargill
  • Patent number: 11794753
    Abstract: A computer includes a processor and a memory storing instructions executable by the processor to receive data indicating a gaze direction of an occupant of the vehicle; determine whether the gaze direction is in a permitted area defined by a boundary, the permitted area being in a forward direction of travel of the vehicle; laterally adjust the boundary of the permitted area based on a speed of the vehicle and based on data indicating turning of the vehicle; and control the vehicle based on whether the gaze direction is in the permitted area.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: October 24, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Anita Arora, Kenneth James Boyd, Jay Patel
  • Patent number: 11793669
    Abstract: The present invention provides improved intravaginal drug delivery devices, i.e., intravaginal rings, useful for the prophylactic administration of dapivirine in combination with either an antimicrobial compound or a contraceptive to a human. The present invention also provides methods of blocking DNA polymerization by an HIV reverse transcriptase enzyme, methods of preventing HIV infection in a female human, methods of treating HIV infection in a female human, methods of preventing unintended pregnancy in a female human, and methods of preparing intravaginal rings.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: October 24, 2023
    Assignee: The Population Council, Inc.
    Inventors: Brid Devlin, Jonathon Daryll Holt, Andrew Nathan Brimer, Jeremy Peter Nuttall, Karl Malcolm, Susan Margaret Fetherston, Peter John James Boyd
  • Publication number: 20230331543
    Abstract: Provided is a MEMS device and an electro-acoustic transducer. The MEMS device includes: a substrate having a cavity passing through the substrate; a diaphragm connected to the substrate and covers the cavity. The diaphragm includes oppositely arranged first and second membranes. The first membrane is on one side of the second membrane facing away from the cavity and includes a first protrusion extending away from the second membrane, the first protrusion has a first groove opening towards the second membrane. The second membrane includes a second protrusion extending away from the first membrane and opposite to the first protrusion, the second protrusion has a second groove opening towards the first membrane. By providing first and second protrusions on first and second diaphragms to form a corrugated diaphragm, the internal stress and stiffness of the diaphragm decreases, which effectively increases the mechanical sensitivity of the MEMS device.
    Type: Application
    Filed: April 18, 2022
    Publication date: October 19, 2023
    Inventors: Yannick Pierre Kervran, Euan James Boyd, Colin Robert Jenkins, Colin Wei Hong Chung, Scott Lyall Cargill
  • Patent number: 11765509
    Abstract: Provided is an MEMS device, including: a substrate having back cavity passing thererthrough; a diaphragm connected to the substrate and covers the back cavity, the diaphragm includes first and second membranes, and accommodating space formed therebetween; a counter electrode; and support loop members arranged concentrically. Opposite ends of the support loop member are connected to the first and second membranes. The support loop members are arranged at intervals. Each support loop member has first sections concentrically arranged as a loop member at intervals. A first notch is formed between two adjacent first sections. In at least one support loop member, the first section has second sections concentrically arranged as a loop member at intervals. A second notch is formed between two adjacent second sections. By a larger first section, distance between adjacent first sections is larger, the technical problem that large number of slots required for counter electrode is solved.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: September 19, 2023
    Assignee: AAC Acoustic Technologies (Shenzhen) Co., Ltd.
    Inventor: Euan James Boyd
  • Patent number: 11750973
    Abstract: A microelectromechanical system includes an enclosure defining a cavity and an opening communicating with the cavity; a membrane mounted at the opening; a cantilever located within the cavity, the at least one cantilever comprising a first end, a second end and a fulcrum located between the first end and the second end; a plunger positioned between the membrane and the cantilever and configured to transfer displacement of the membrane to the first end of the cantilever; and a sensing member connected to the second end of the cantilever. The distance between the first end and the fulcrum is less than that between the second end and the fulcrum. The microelectromechanical system has the advantages of high SNR, small package size and high sensitivity. The membrane has a stiffness order of magnitude higher than a conventional membrane, which avoids mechanical collapse and large DC deformation under 1 atm.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: September 5, 2023
    Assignee: AAC Acoustic Technologies (Shenzhen) Co., Ltd.
    Inventors: Anup Patel, Euan James Boyd, Scott Lyall Cargill
  • Patent number: 11743634
    Abstract: An MEMS microphone includes a substrate including a back volume provided inside the substrate and an opening provided at an upper surface of the substrate to communicate the back volume; a sensing device provided at an inner side wall of the back volume; a first cantilever provided inside the back volume and including end portions coupling with the sensing device; a first membrane provided at the opening; a second membrane provided inside the back volume; and second cantilevers, each of which includes a first end mechanically supporting the first cantilever, and a second end connected to the second membrane. By suspending the first cantilever on the second cantilevers, the end portions of the first cantilever always couple with a preset position of the sensing device. Thus, the DC offset of the displacement of the membrane can be prevented.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: August 29, 2023
    Assignee: AAC Acoustic Technologies (Shenzhen) Co., Ltd.
    Inventors: Euan James Boyd, Anup Patel, Colin Wei Hong Chung
  • Publication number: 20230202834
    Abstract: Provided is a micro-electro-mechanical system and an electro-acoustic conversion device having the micro-electro-mechanical system. The micro-electro-mechanical system includes: first and second membranes arranged opposite to each other; support members arranged between the first and second membranes; and an opening provided on the first and/or second membranes. Each support member includes support walls, and opposite ends of each of the support walls are connected to the first and second membranes. The first and second membranes, and two adjacent support walls in one support member are enclosed to form a first chamber. The opening is configured to link the first chamber with the outside. By arranging a supporting member composed of support walls and providing an opening on the first and/or second membranes, the compliance of the first or second membrane is increased, and the inter-plate capacitance therebetween is reduced.
    Type: Application
    Filed: December 24, 2021
    Publication date: June 29, 2023
    Inventors: Anup Hasmukh Patel, Euan James Boyd, Scott Lyall Cargill
  • Patent number: 11677337
    Abstract: A comb drive for MEMS device includes a stator and a rotor displaceable relative to the stator in a first direction. The stator includes stator comb fingers and the rotor includes rotor comb fingers. The stator comb fingers are coupled to two high impedance nodes to form high impedance node domains arranged in the first direction. The rotor comb fingers are coupled to two oppositely biased electrodes to form oppositely biased domains. Pairs of capacitors with opposite acoustic polarity are respectively formed between the high impedance node domains and the oppositely biased domains. The comb drive of the present invention has increased electrostatic sensitivity for a given unit cell cross-sectional area whilst maintaining an acceptable capacitance and linearity of voltage signal vs displacement. Extra force shim unit cells may be used, which allows for the stiffness between the rotor and stator to be controlled and reduced to zero for a particular displacement range, without impacting sensitivity.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 13, 2023
    Assignee: AAC Acoustic Technologies (Shenzhen) Co., Ltd.
    Inventors: Anup Patel, Yannick Pierre Kervran, Euan James Boyd
  • Publication number: 20230123123
    Abstract: A vibration attenuation device is provided. The vibration attenuation device includes one or more connectors configured to be attached to a primary structure, a plurality of beams mounted on the one or more connectors, and a plurality of weight materials attached to the beams. The primary structure comprises at least one of a pipe, a rod or a shaft.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 20, 2023
    Inventors: Sami El-Borgi, Ralston Fernandes, Rawad Yazbeck, James Boyd, Dimitiers Lagoudas, Karim Bellila
  • Publication number: 20230059140
    Abstract: A microphone back panel and a microphone are provided. The microphone back panel is used for a microphone, the microphone includes a diaphragm, and the microphone back panel includes a main body. A side of the main body is provided with a thinned area not in contact with the diaphragm, and a hole is formed in the main body. The main body is provided with a thinned area, thereby increasing flexibility of the microphone back panel. When the microphone back panel is bent, the increased flexibility can reduce the stress load on the microphone back panel, thereby reducing possibility of damage to the microphone back panel. In addition, the main body is provided with a hole, thereby further increasing flexibility of the microphone back panel, and reducing stress load on the microphone back panel and reducing possibility of damage to the microphone back panel.
    Type: Application
    Filed: August 20, 2021
    Publication date: February 23, 2023
    Inventors: Scott Lyall Cargill, Euan James Boyd
  • Publication number: 20230047220
    Abstract: A comb drive for MEMS device includes a stator and a rotor displaceable relative to the stator in a first direction. The stator includes stator comb fingers and the rotor includes rotor comb fingers. The stator comb fingers are coupled to two high impedance nodes to form high impedance node domains arranged in the first direction. The rotor comb fingers are coupled to two oppositely biased electrodes to form oppositely biased domains. Pairs of capacitors with opposite acoustic polarity are respectively formed between the high impedance node domains and the oppositely biased domains. The comb drive of the present invention has increased electrostatic sensitivity for a given unit cell cross-sectional area whilst maintaining an acceptable capacitance and linearity of voltage signal vs displacement. Extra force shim unit cells may be used, which allows for the stiffness between the rotor and stator to be controlled and reduced to zero for a particular displacement range, without impacting sensitivity.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 16, 2023
    Inventors: Anup Patel, Yannick Pierre Kervran, Euan James Boyd
  • Publication number: 20230044563
    Abstract: An automated mushroom harvesting system for mounting to a vertical mushroom rack comprises a robot having a frame mounted to a vertical carriage assembly. A SCARA arm is slidably mounted to the vertical carriage assembly by a vertical stage, operable to move the SCARA arm along a vertical mast. The SCARA arm moves the end effector in a horizontal plane for harvesting mushrooms, above the surface of the mushroom bed and into and out of the confines of the mushroom rack, and the vertical stage moves the SCARA arm in a vertical direction so as to access the mushrooms in a bed and to access mushroom beds on different levels of the vertical mushroom rack. An end effector having a helically reinforced neck and a graduated elasticity modulus, with a lower elasticity modulus in the neck and a higher elasticity in the cup, is also provided.
    Type: Application
    Filed: August 3, 2021
    Publication date: February 9, 2023
    Inventors: Michael Howard BOUDREAU, Jonathan Michael BAKKER, Kaleab BEFIKADU, Kyran Ashley Lawrence FINDLATER, Colm James FITZPATRICK, Kyle Andrew FLATMAN, James Boyd GIBSON, Matthew Dean KOEBEL, Jeremiah MCCARTHY, Clark Allan RICHARDSON, Aaron STRODA, Nathan Edward Charles TOMLINSON, Seth Bryan VAN VARSEVELD, Matthew Steven WATTIE, Timur LUGUEV, Brandin Colt SLONSKI, Konrad Rafael VAN VARSEVELD, Cameron Mitchell MCLEOD, David Alan LONNEBERG
  • Publication number: 20220378603
    Abstract: The present invention provides improved intravaginal drug delivery devices, i.e., intravaginal rings, useful for the prophylactic administration of dapivirine in combination with either an antimicrobial compound or a contraceptive to a human. The present invention also provides methods of blocking DNA polymerization by an HIV reverse transcriptase enzyme, methods of preventing HIV infection in a female human, methods of treating HIV infection in a female human, methods of preventing unintended pregnancy in a female human, and methods of preparing intravaginal rings.
    Type: Application
    Filed: January 18, 2022
    Publication date: December 1, 2022
    Inventors: Brid Devlin, Jonathon Daryll Holt, Andrew Nathan Brimer, Jeremy Peter Nuttall, Karl Malcolm, Susan Margaret Fetherston, Peter John James Boyd