Patents by Inventor James Brazdil

James Brazdil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348370
    Abstract: A process is described for forming taurine, which comprises reacting monoethanolamine with sulfuric acid to provide an 2-aminoethanol hydrogen sulfate ester product, combining the 2-aminoethanol hydrogen sulfate ester product with at least one of carbon dioxide, a carbonate or bicarbonate and with at least one of a sulfite or bisulfite to form a sulfonation reaction mixture, and heating the sulfonation reaction mixture for a sufficient time to form a taurine product therefrom. The efficiency of the sulfonation step is improved sufficiently to enable a continuous process for making taurine, particularly with at least some concurrent water removal in the first, esterification step to facilitate full conversion of the monoethanolamine to the desired 2-aminoethanol hydrogen sulfate ester intermediate.
    Type: Application
    Filed: June 18, 2021
    Publication date: November 2, 2023
    Inventors: Chi Cheng Ma, James Brazdil, Hao Luo
  • Publication number: 20230242563
    Abstract: Various processes for preparing C4 aldoses and/or ketones thereof are described. Various processes are described for preparing C4 aldoses and/or ketones thereof from feed compositions comprising glycolaldehyde. Also, various processes for preparing useful downstream products and intermediates, such as erythritol and erythronic acid, from the C4 aldoses and/or ketones thereof are described.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 3, 2023
    Inventors: William J. Collins, Josh Terrian, James Brazdil, Kevin Martin
  • Publication number: 20230227403
    Abstract: A process comprises continuously adding a first stream and a second stream to a sulfonation vessel, wherein the first stream comprises aminoethanol sulfate ester (AES) and the second stream comprises an aqueous solution of sodium sulfite (Na2SO3). The process comprises continuously mixing the AES and the aqueous solution of Na2SO3 in the sulfonation vessel, thus producing a mixture. The process comprises continuously subjecting the mixture to heat in the presence of an inert gas, thus converting the AES to the taurine via sulfonation. In an aspect, the AES has a residence time of no more than four hours in the sulfonation vessel. In an aspect the heating step is conducted at a temperature of at least 115° C. and a pressure of at least 200 psi.
    Type: Application
    Filed: June 4, 2021
    Publication date: July 20, 2023
    Inventors: Chi Cheng Ma, James Brazdil, Hao Luo
  • Publication number: 20230227391
    Abstract: Various processes for the pyrolysis of carbohydrates to prepare products such as glycolaldehyde are described. Also, various catalysts and processes for preparing catalysts useful for carbohydrate pyrolysis are described.
    Type: Application
    Filed: April 28, 2021
    Publication date: July 20, 2023
    Inventors: William J. Collins, Josh Terrian, James Brazdil, Kevin Martin
  • Publication number: 20230104350
    Abstract: A process for producing taurine, comprising mixing aminoethanol sulfate ester (AES) and a carbon dioxide, thus producing a reaction mixture, and heating the reaction mixture in the presence of a sulfite or a bisulfite, or combination thereof, such that taurine is formed.
    Type: Application
    Filed: March 22, 2021
    Publication date: April 6, 2023
    Inventors: Chi Cheng Ma, James Brazdil, Hao Luo
  • Publication number: 20230109446
    Abstract: A process for producing taurine, comprising mixing aminoethanol sulfate ester (AES) and a carbonate or bicarbonate, or combination thereof, thus producing a reaction mixture, and heating the reaction mixture in the presence of a sulfite or a bisulfite, or combination thereof, such that taurine is formed.
    Type: Application
    Filed: March 22, 2021
    Publication date: April 6, 2023
    Inventors: Chi Cheng Ma, James Brazdil
  • Patent number: 11578048
    Abstract: Processes are disclosed for the synthesis of 2-substituted furan derivatives, such as furan dicarboxylic acid (FDCA), from a starting compound or substrate having a carbonyl functional group (C?O), with hydroxy-substituted carbon atoms at alpha (?) and beta (?) positions, relative to the carbonyl functional group. According a particular embodiment, an ?-, ?-dihydroxy carboxylate is dehydrated to form a dicarbonyl intermediate by transformation of the ?-hydroxy group to a second carbonyl group and removal of the ?-hydroxy group. The dicarbonyl intermediate undergoes cyclization and dehydration, to produce the 2-substituted furan derivative. Optionally, a further step of oxidation may be carried out, for example to convert a hydroxymethyl group, as a 5-substituted about the furan ring, to a carboxy group of FDCA.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: February 14, 2023
    Assignee: ARCHER DANIELS MIDLAND COMPANY
    Inventors: James Brazdil, Donald Rogness
  • Publication number: 20230028813
    Abstract: Various processes for preparing aldaric acids, aldonic acids, uronic acids, and/or lactone(s) thereof are described. For example, processes for preparing a C5-C6 aldaric acid and/or lactone(s) thereof by the catalytic oxidation of a C5-C6 aldonic acid and/or lactone(s) thereof and/or a C5-C6 aldose are described.
    Type: Application
    Filed: November 16, 2020
    Publication date: January 26, 2023
    Inventors: Karl Albrecht, James Brazdil, Andrew Ingram
  • Publication number: 20230002301
    Abstract: Various processes for preparing aldaric acids, aldonic acids, uronic acids, and/or lactone(s) thereof are described. For example, processes for preparing a C2-C7 aldaric acid and/or lactone(s) thereof by the catalytic oxidation of a C2-C7 aldonic acid and/or lactone(s) thereof and/or a C2-C7 aldose are described.
    Type: Application
    Filed: November 13, 2020
    Publication date: January 5, 2023
    Inventors: Karl Albrecht, James Brazdil
  • Publication number: 20220363628
    Abstract: An integrated, co-product capable process is provided for producing taurine in particular with optionally one or both of monoethanolamine and diethanolamine from one or more sugars, comprising pyrolyzing one or more sugars to produce a crude pyrolysis product mixture including glycolaldehyde and formaldehyde; optionally removing formaldehyde from the crude pyrolysis product mixture, then combining the crude pyrolysis product mixture with an aminating agent in the presence of hydrogen and further in the presence of a catalyst to produce at least monoethanolamine from the crude pyrolysis product mixture; optionally recovering diethanolamine from the crude reductive amination product, sulfating at least a portion to all of the monoethanolamine product to produce 2-aminoethyl hydrogen sulfate ester; and sulfonating the 2-aminoethyl hydrogen sulfate ester to produce taurine.
    Type: Application
    Filed: July 31, 2019
    Publication date: November 17, 2022
    Applicant: Archer Daniels Midland Company
    Inventors: James Brazdil, Chi-Cheng Ma
  • Patent number: 11414376
    Abstract: Processes are disclosed for the synthesis of an ?-amino acid or ?-amino acid derivative, from a starting compound or substrate having a carbonyl functional group (C?O), with hydroxy-substituted carbon atoms at alpha (?) and beta (?) positions, relative to the carbonyl functional group. According a particular embodiment, an ?-, ?-dihydroxy carboxylic acid or carboxylate is dehydrated to form a dicarbonyl intermediate by transformation of the ?-hydroxy group to a second carbonyl group (adjacent a carbonyl group of the starting compound) and removal of the ?-hydroxy group. The dicarbonyl intermediate is optionally cracked to form a second, in this case cracked, dicarbonyl intermediate having fewer carbon atoms relative to the dicarbonyl intermediate but preserving the first and second carbonyl groups. Either or both of the dicarbonyl intermediate and the cracked dicarbonyl intermediate may be aminated to convert the second carbonyl group to an amino (—NH2) group, for producing the corresponding ?-amino acid(s).
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: August 16, 2022
    Assignee: ARCHER DANIELS MIDLAND COMPANY
    Inventors: James Brazdil, Donald Rogness, Chi-Cheng Ma
  • Publication number: 20220064136
    Abstract: Selective hydrogenation processes are disclosed that can upgrade impure feeds, such as those obtained from biomass and containing a number of small (e.g., 2-6 carbon atom) molecules having aldehyde and/or ketone carbon atoms. For example, whereas glycolaldehyde and its methylated derivative, hydroxyacetone (acetol) are both high value intermediates for certain downstream processing reactions, they are normally recovered in a condensate from pyrolysis of carbohydrates (e.g., aldose-containing sugars) together with glyoxal and its methylated derivative, pyruvaldehyde. The selective hydrogenation of these compounds bearing two carbonyl carbon atoms, without over-hydrogenation to ethylene glycol and propylene glycol, can increase the concentration of the desired intermediates. These beneficial effects of selective hydrogenation may be achieved through the use of a hydrogenation catalyst comprising noble metals such as Ru and Pt.
    Type: Application
    Filed: January 9, 2020
    Publication date: March 3, 2022
    Inventors: James Brazdil, Chi-Cheng Ma
  • Publication number: 20210309604
    Abstract: Improvements in catalyst systems and associated processes for the conversion of glycolaldehyde to monoethanolamine are disclosed. The catalyst systems exhibit improved selectivity to this desired product and consequently reduced selectivity to byproducts such as diethanolamine and ethylene glycol. These beneficial effects are achieved through the use of acids, and particularly Lewis acids, as co-catalysts of the reductive amination reaction, in conjunction with a hydrogenation catalyst.
    Type: Application
    Filed: July 30, 2019
    Publication date: October 7, 2021
    Applicant: Archer Daniels Midland Company
    Inventors: James Brazdil, Chi-Cheng Ma
  • Patent number: 11078138
    Abstract: A hydrogenolysis process is disclosed for directly converting a sugar feed comprised of a high fructose feedstock, a high sucrose feedstock, or a combination of these to a mixed lower polyols product including both propylene glycol and ethylene glycol. The process provides greater propylene glycol selectivity than ethylene glycol selectivity such that the propylene glycol is present to a greater extent than the ethylene glycol in the mixed lower polyols product. The sugar feed and a source of hydrogen are supplied to a reaction vessel and reacted in the presence of a hydrogenolysis catalyst comprising molybdenum (Mo) and ruthenium (Ru).
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: August 3, 2021
    Assignee: ARCHER DANIELS MIDLAND COMPANY
    Inventors: Chi Cheng Ma, James Brazdil
  • Publication number: 20210163394
    Abstract: Processes are disclosed for the synthesis of a cracked product or an end product, from a starting compound or substrate having a carbonyl functional group (C?O), with hydroxy-substituted carbon atoms at alpha (?) and beta (?) positions, relative to the carbonyl functional group. According a particular embodiment, an ?-, ?-dihydroxy carboxylic acid or carboxylate is dehydrated to form a dicarbonyl intermediate by transformation of the ?-hydroxy group to a second carbonyl group and removal of the ?-hydroxy group. The dicarbonyl intermediate is cracked to form the cracked product, in which the first and second carbonyl groups are preserved. Either or both of (i) the cracked product and (ii) a second cracked product generated from cleavage of a carbon-carbon bond of the dicarbonyl intermediate, may be further converted (e.g., by hydrogenation) to one or more end products, which, like the cracked product(s), also having fewer carbon atoms relative to the dicarbonyl intermediate and substrate.
    Type: Application
    Filed: April 3, 2019
    Publication date: June 3, 2021
    Applicant: Archer Daniels Midland Company
    Inventors: James Brazdil, Donald Rogness
  • Publication number: 20210163400
    Abstract: Processes are disclosed for the synthesis of an ?-amino acid or ?-amino acid derivative, from a starting compound or substrate having a carbonyl functional group (C?O), with hydroxy-substituted carbon atoms at alpha (?) and beta (?) positions, relative to the carbonyl functional group. According a particular embodiment, an ?-, ?-dihydroxy carboxylic acid or carboxylate is dehydrated to form a dicarbonyl intermediate by transformation of the ?-hydroxy group to a second carbonyl group (adjacent a carbonyl group of the starting compound) and removal of the ?-hydroxy group. The dicarbonyl intermediate is optionally cracked to form a second, in this case cracked, dicarbonyl intermediate having fewer carbon atoms relative to the dicarbonyl intermediate but preserving the first and second carbonyl groups. Either or both of the dicarbonyl intermediate and the cracked dicarbonyl intermediate may be aminated to convert the second carbonyl group to an amino (—NH2) group, for producing the corresponding ?-amino acid(s).
    Type: Application
    Filed: April 2, 2019
    Publication date: June 3, 2021
    Applicant: Archer Daniels Midland Company
    Inventors: James Brazdil, Donald Rogness, Chi-Cheng Ma
  • Publication number: 20210163436
    Abstract: Processes are disclosed for the synthesis of 2-substituted furan derivatives, such as furan dicarboxylic acid (FDCA), from a starting compound or substrate having a carbonyl functional group (C?O), with hydroxy-substituted carbon atoms at alpha (?) and beta (?) positions, relative to the carbonyl functional group. According a particular embodiment, an ?-, ?-dihydroxy carboxylate is dehydrated to form a dicarbonyl intermediate by transformation of the ?-hydroxy group to a second carbonyl group and removal of the ?-hydroxy group. The dicarbonyl intermediate undergoes cyclization and dehydration, to produce the 2-substituted furan derivative. Optionally, a further step of oxidation may be carried out, for example to convert a hydroxymethyl group, as a 5-substituted about the furan ring, to a carboxy group of FDCA.
    Type: Application
    Filed: April 4, 2019
    Publication date: June 3, 2021
    Applicant: Archer Daniels Midland Company
    Inventors: James Brazdil, Donald Rogness
  • Publication number: 20200361839
    Abstract: A hydrogenolysis process is disclosed for directly converting a sugar feed comprised of a high fructose feedstock, a high sucrose feedstock, or a combination of these to a mixed lower polyols product including both propylene glycol and ethylene glycol. The process provides greater propylene glycol selectivity than ethylene glycol selectivity such that the propylene glycol is present to a greater extent than the ethylene glycol in the mixed lower polyols product. The sugar feed and a source of hydrogen are supplied to a reaction vessel and reacted in the presence of a hydrogenolysis catalyst comprising molybdenum (Mo) and ruthenium (Ru).
    Type: Application
    Filed: January 29, 2019
    Publication date: November 19, 2020
    Applicant: Archer Daniels Midland Company
    Inventors: Chi Cheng Ma, James Brazdil
  • Publication number: 20060217264
    Abstract: A catalyst composition and its use for the oxidation of ethane to ethylene and acetic acid which comprises (i) a support, and (ii) in combination with oxygen, the elements molybdenum, vanadium and niobium, optionally tungsten and a component Z, which is one or more metals of Group 14 of the Periodic Table of Elements; a, b, c, d and e represent the gram atom ratios of the elements Mo, W, Z, V and Nb respectively, such that 0<a?1; 0?b<1 and a+b=1; 0.05<c?2; 0<d?2; and 0<e?1.
    Type: Application
    Filed: July 30, 2004
    Publication date: September 28, 2006
    Inventors: James Brazdil, Richard George, Bruce Rosen
  • Publication number: 20060128988
    Abstract: An oxide catalyst composition comprising the elements molybdenum, vanadium, niobium and titanium and a process for making the catalyst composition. A process for the selective oxidation of ethane and/or ethylene and/or ethylene to acetic acid using the catalyst composition. The catalyst composition provides high selectivity to acetic acid with reduced selectivity to ethylene.
    Type: Application
    Filed: April 28, 2004
    Publication date: June 15, 2006
    Inventors: James Brazdil, Richard George, Bruce Rosen