Patents by Inventor James Burst

James Burst has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9496426
    Abstract: A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: November 15, 2016
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Teresa M. Barnes, James Burst
  • Patent number: 9419170
    Abstract: Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.
    Type: Grant
    Filed: February 5, 2015
    Date of Patent: August 16, 2016
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: David Albin, James Burst, Wyatt Metzger, Joel Duenow, Stuart Farrell, Eric Colegrove
  • Patent number: 9147793
    Abstract: A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: September 29, 2015
    Assignee: Alliance For Sustainable Energy, LLC
    Inventors: Timothy A. Gessert, Rommel Noufi, Ramesh G. Dhere, David S. Albin, Teresa Barnes, James Burst, Joel N. Duenow, Matthew Reese
  • Publication number: 20150221810
    Abstract: Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.
    Type: Application
    Filed: February 5, 2015
    Publication date: August 6, 2015
    Inventors: David ALBIN, James BURST, Wyatt METZGER, Joel DUENOW, Stuart FARRELL, Eric COLEGROVE
  • Publication number: 20150047699
    Abstract: A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.
    Type: Application
    Filed: February 5, 2013
    Publication date: February 19, 2015
    Inventors: Teresa M. Barnes, James Burst
  • Publication number: 20140134786
    Abstract: A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 15, 2014
    Applicant: Alliance for Sustainable Energy, LLC
    Inventors: Timothy A. Gessert, Rommel Noufi, Ramesh G. Dhere, David S. Albin, Teresa Barnes, James Burst, Joel N. Duenow, Matthew Reese
  • Publication number: 20120107491
    Abstract: Thin films containing a transparent conducting oxide and a high permittivity material are disclosed. Exemplary thin films may exhibit increased transmission in the visible-to-near infrared (vis-NIR) spectrum without a decrease in electrical conductivity compared to the thin film without the high permittivity material. Methods for making thin films having enhanced optical properties without substantially decreased electrical quality are also disclosed.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 3, 2012
    Applicant: ALLIANCE FOR SUSTAINABLE ENERGY, LLC
    Inventors: Xiaonan Li, James Burst, Timothy A. Gessert