Patents by Inventor James C. Kennedy

James C. Kennedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240110242
    Abstract: The present invention provides methods for sequencing and analysis of nucleic acids and determining that a subject is positive for a non-usual interstitial pneumonia subtype.
    Type: Application
    Filed: March 9, 2023
    Publication date: April 4, 2024
    Inventors: Giulia C. Kennedy, James Diggans, Jing Huang, Yoonha Choi, Su Yeon Kim, Daniel Pankratz, Moraima Pagan
  • Patent number: 11643224
    Abstract: Systems and methods are provided for inspecting a wing panel. Some methods include advancing a wing panel through a Non-Destructive Inspection (NDI) station, and inspecting the wing panel with inspection heads at the NDI station. The wing panel may be suspended beneath a strongback during inspection and/or advancement, such as by using vacuum couplers and/or adjustable-length pogos of the strongback, and suspending may include enforcing a contour to the wing panel using the vacuum couplers and/or pogos. Other methods include receiving a wing panel at an NDI station and inspecting a portion thereof during movement through the NDI station. Some systems include a track, a strongback to suspend a wing panel beneath it and to advance along the track, and an NDI station disposed at the track to inspect the wing panel while suspended.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: May 9, 2023
    Assignee: The Boeing Company
    Inventors: Daniel R. Smith, Darrell D. Jones, James C. Kennedy, Jeremy Evan Justice
  • Publication number: 20220155260
    Abstract: Systems and methods are provided for inspecting aircraft fuselages. Non-Destructive Inspection (NDI) stations inspect sections of a fuselage via pulsed-line assembly techniques. After each pulse, a section of fuselage is moved by less than its length, and one or more NDI stations disposed at different portions of the section to inspect the section of fuselage for out-of-tolerance conditions. A method for inspecting a structure for inconsistencies which includes advancing a structure along a track in a process direction through a Non-Destructive Inspection (NDI) station, indexing the structure to the NDI station and inspecting the structure with the NDI station.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 19, 2022
    Inventors: Daniel R. Smith, Darrell D. Jones, Barry A. Fetzer, Jeremy Evan Justice, II, James C. Kennedy
  • Publication number: 20220153453
    Abstract: Systems and methods are provided for inspecting a wing panel. Some methods include advancing a wing panel through a Non-Destructive Inspection (NDI) station, and inspecting the wing panel with inspection heads at the NDI station. The wing panel may be suspended beneath a strongback during inspection and/or advancement, such as by using vacuum couplers and/or adjustable-length pogos of the strongback, and suspending may include enforcing a contour to the wing panel using the vacuum couplers and/or pogos. Other methods include receiving a wing panel at an NDI station and inspecting a portion thereof during movement through the NDI station. Some systems include a track, a strongback to suspend a wing panel beneath it and to advance along the track, and an NDI station disposed at the track to inspect the wing panel while suspended.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 19, 2022
    Inventors: Daniel R. Smith, Darrell D. Jones, James C. Kennedy, Jeremy Evan Justice
  • Patent number: 11327052
    Abstract: Disclosed herein is an ultrasonic inspection probe for inspecting parts. The ultrasonic inspection probe comprises a probe body that comprises an ultrasonic array and a plate attachment surface. The ultrasonic array comprises a plurality of ultrasound elements, each selectively operable to generate an ultrasonic beam and each fixed relative to the plate attachment surface. The ultrasonic inspection probe also comprises an interface plate, comprising a body attachment surface, removably attachable to the plate attachment surface of the probe body, and a part inspection surface, shaped to complement a shape of one of the parts.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 10, 2022
    Assignee: The Boeing Company
    Inventors: Roy M. Gagnon, Jeffry J. Garvey, James C. Kennedy
  • Patent number: 11287507
    Abstract: A method for testing a structure includes steps of: identifying a three-dimensional position of a surface of the structure relative to a reference frame; transmitting laser light from an output of a transmitter onto the surface of the structure to form ultrasonic waves in the structure and to detect a response to the ultrasonic waves; based on the three-dimensional position of the surface, moving the laser light over the structure along a scan path so that the output of the transmitter is located at a constant offset distance from the surface and that the laser light, transmitted from the output of the transmitter, is directed onto the surface at a constant angle of projection; and based on the response to the ultrasonic waves, determining whether an inconsistency is present in the structure.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: March 29, 2022
    Assignee: The Boeing Company
    Inventors: William P. Motzer, Gary E. Georgeson, Jill P. Bingham, James C. Kennedy, Jeffry J. Garvey
  • Patent number: 11280764
    Abstract: An ultrasonic inspection device for inspection of a structure. The device includes a body with a first side and a second side that are on opposing sides of a gap. The gap is sized to receive the structure. A probe is attached to the first side and transmits ultrasonic signals at the structure. A reflector plate is attached to the second side and is fixed relative to the probe and reflects the signals that pass through the structure. The probe is configured to detect the signals that reflect off the structure and to detect the signals that pass through the structure and reflect off the reflector plate. The received signals provide for pulse echo and through transmission inspection of the structure.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: March 22, 2022
    Assignee: THE BOEING COMPANY
    Inventors: Jeffry J. Garvey, James C. Kennedy, Roy Martin Gagnon
  • Patent number: 11255825
    Abstract: Methods that provide wrinkle characterization and performance prediction for wrinkled composite structures using automated structural analysis. In accordance with some embodiments, the method combines the use of B-scan ultrasound data, automated optical measurement of wrinkles and geometry of cross-sections, and finite element analysis of wrinkled composite structure to provide the ability to assess the actual significance of a detected wrinkle relative to the intended performance of the structure. The disclosed method uses an ultrasonic inspection system that has been calibrated by correlating ultrasonic B-scan data acquired from reference standards with measurements of optical cross sections (e.g., micrographs) of those reference standards.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: February 22, 2022
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, Jill P. Bingham, Hong Hue Tat, Yuan-Jye Wu, John M. Pryor, Sadie L. Fieni, Mark D. Winters, Kathryn T. Moore, James C. Kennedy, Clayton M. Little, John Z. Lin
  • Patent number: 11143625
    Abstract: Systems, methods, and apparatus for ultrasonic inspection of parts are disclosed. A method for inspection of a part comprises transmitting, by a source, an initial signal towards the part. The method further comprises reflecting, off of a surface of the part, the initial signal to generate a surface reflection signal. Also, the method comprises receiving, by a receiver, the surface reflection signal. In addition, the method comprises determining, by a processor(s), a shape of the surface of the part by using a magnitude of the surface reflection signal and an echo travel time of the initial signal with respect to the surface reflection signal. Additionally, the method comprises determining, by a processor(s), a surface inspection signal commensurate with the shape of the surface of the part. Further, the method comprises transmitting, by the source, the surface inspection signal towards the part for inspection of the surface of the part.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: October 12, 2021
    Assignee: The Boeing Company
    Inventor: James C. Kennedy
  • Publication number: 20210148863
    Abstract: Systems, methods, and apparatus for ultrasonic inspection of parts are disclosed. A method for inspection of a part comprises transmitting, by a source, an initial signal towards the part. The method further comprises reflecting, off of a surface of the part, the initial signal to generate a surface reflection signal. Also, the method comprises receiving, by a receiver, the surface reflection signal. In addition, the method comprises determining, by a processor(s), a shape of the surface of the part by using a magnitude of the surface reflection signal and an echo travel time of the initial signal with respect to the surface reflection signal. Additionally, the method comprises determining, by a processor(s), a surface inspection signal commensurate with the shape of the surface of the part. Further, the method comprises transmitting, by the source, the surface inspection signal towards the part for inspection of the surface of the part.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 20, 2021
    Inventor: James C. Kennedy
  • Patent number: 10996162
    Abstract: Described herein is an apparatus, for shielding light generated by a laser during non-destructive inspection of an object. The apparatus includes a light shield at least partially enveloping the laser and defining a first opening through which light generated by the laser passes from the laser to the object. The light shield is opaque and includes at least one first biasing mechanism. The apparatus also includes at least one first light seal coupled to the light shield about the first opening of the light shield. The at least one first biasing mechanism is configured to urge resilient deformation of the at least one first light seal against the object. When the at least one first light seal is resiliently deformed against the object, light generated by the laser is constrained within a light containment space defined between the light shield, the at least one first light seal, and the object.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 4, 2021
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, William P. Motzer, Jeffry J. Garvey, Scott W. Lea, James C. Kennedy, Steven K. Brady, Alan F. Stewart, Jill P. Bingham
  • Patent number: 10981676
    Abstract: Systems and methods according to one or more embodiments are provided for performing rotorcraft based non-destructive physical inspection and/or testing. In one example, a system includes a rotorcraft and a rotating arm coupled to the rotorcraft. An inspection sensor is coupled to a first end of the rotating arm and configured to be placed in close proximity to and/or in physical contact with a surface of an object.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: April 20, 2021
    Assignee: The Boeing Company
    Inventor: James C. Kennedy
  • Patent number: 10946266
    Abstract: A lottery ticket dispenser array includes a frame and a plurality of separate bins contained within the frame. Each bin includes a housing having a front side that faces a purchaser in operational use of the dispenser array, an opposite back side, and an internal space for receipt of a supply of interconnected lottery tickets, wherein each lottery tickets contains a code printed thereon. Each bin has an electronic drive mechanism that dispenses the lottery tickets therefrom. The bins are separately removable and insertable into the array. A printer module is provided in the array and has a size and configuration so as to be insertable into the array in place of at least one of the bins.
    Type: Grant
    Filed: September 29, 2019
    Date of Patent: March 16, 2021
    Assignee: Scientific Games International, Inc.
    Inventor: James C. Kennedy
  • Publication number: 20210063355
    Abstract: Disclosed herein is an ultrasonic inspection probe for inspecting parts. The ultrasonic inspection probe comprises a probe body that comprises an ultrasonic array and a plate attachment surface. The ultrasonic array comprises a plurality of ultrasound elements, each selectively operable to generate an ultrasonic beam and each fixed relative to the plate attachment surface. The ultrasonic inspection probe also comprises an interface plate, comprising a body attachment surface, removably attachable to the plate attachment surface of the probe body, and a part inspection surface, shaped to complement a shape of one of the parts.
    Type: Application
    Filed: August 28, 2019
    Publication date: March 4, 2021
    Inventors: Roy M. Gagnon, Jeffry J. Garvey, James C. Kennedy
  • Publication number: 20210063357
    Abstract: An ultrasonic inspection device for inspection of a structure. The device includes a body with a first side and a second side that are on opposing sides of a gap. The gap is sized to receive the structure. A probe is attached to the first side and transmits ultrasonic signals at the structure. A reflector plate is attached to the second side and is fixed relative to the probe and reflects the signals that pass through the structure. The probe is configured to detect the signals that reflect off the structure and to detect the signals that pass through the structure and reflect off the reflector plate. The received signals provide for pulse echo and through transmission inspection of the structure.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 4, 2021
    Inventors: Jeffry J. Garvey, James C. Kennedy, Roy Martin Gagnon
  • Patent number: 10937280
    Abstract: A lottery ticket dispenser array includes a frame and a plurality of separate bins contained within the frame. Each bin includes a housing having a front side that faces a purchaser in operational use of the dispenser array, an opposite back side, and an internal space for receipt of a supply of interconnected lottery tickets, wherein each lottery tickets contains a code printed thereon. Each bin has an electronic drive mechanism that dispenses the lottery tickets therefrom. A controller is in communication with each of the drive mechanisms to initiate a dispense sequence upon receipt of a ticket dispense command from the controller. The controller is configured on the frame and is variably positional relative to the frame between different operational positions.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: March 2, 2021
    Assignee: Scientific Games International, Inc.
    Inventor: James C. Kennedy
  • Patent number: 10843821
    Abstract: A method and system may be provided for determining a set of parameters for preparing a skin for assembly to a substructure. The skin may be nondestructively inspected to gather a data set relating to the skin thickness. Sets of as-built thickness values for the skin and of deviations from a nominal map of the skin thickness may be calculated. A mating area for the skin and substructure and a set of one or more locations for fastener holes in the mating area may be determined. A set of parameters for the one or more fastener holes and a set of one or more fastener lengths may be generated using the deviations. A tool may cut the one or more fastener holes using the set of parameters and the skin and substructure may be fastened using fasteners selected according to the generated set of one or more fastener lengths.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: November 24, 2020
    Assignee: The Boeing Company
    Inventors: Roger W. Engelbart, John William Adams, James C. Kennedy
  • Publication number: 20200216198
    Abstract: A method and system may be provided for determining a set of parameters for preparing a skin for assembly to a substructure. The skin may be nondestructively inspected to gather a data set relating to the skin thickness. Sets of as-built thickness values for the skin and of deviations from a nominal map of the skin thickness may be calculated. A mating area for the skin and substructure and a set of one or more locations for fastener holes in the mating area may be determined. A set of parameters for the one or more fastener holes and a set of one or more fastener lengths may be generated using the deviations. A tool may cut the one or more fastener holes using the set of parameters and the skin and substructure may be fastened using fasteners selected according to the generated set of one or more fastener lengths.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 9, 2020
    Applicant: The Boeing Company
    Inventors: Roger W. Engelbart, John William Adams, James C. Kennedy
  • Patent number: 10571390
    Abstract: A method of detecting local material changes in a composite structure is presented. A pulsed laser beam is directed towards the composite structure comprised of a number of composite materials. Wide-band ultrasonic signals are formed in the composite structure when radiation of the pulsed laser beam is absorbed by the composite structure. The wide-band ultrasonic signals are detected to form data. The data is processed to identify a local frequency value for the composite structure. The local frequency value is used to determine if local material changes are present in the number of composite materials.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: February 25, 2020
    Assignee: The Boeing Company
    Inventors: William P. Motzer, Gary Ernest Georgeson, Jill Paisley Bingham, Steven Kenneth Brady, Alan F. Stewart, James C. Kennedy, Ivan Pelivanov, Matthew O'Donnell, Jeffrey Reyner Kollgaard
  • Publication number: 20200058186
    Abstract: A lottery ticket dispenser array includes a frame and a plurality of separate bins contained within the frame. Each bin includes a housing having a front side that faces a purchaser in operational use of the dispenser array, an opposite back side, and an internal space for receipt of a supply of interconnected lottery tickets, wherein each lottery tickets contains a code printed thereon. Each bin has an electronic drive mechanism that dispenses the lottery tickets therefrom. A controller is in communication with each of the drive mechanisms to initiate a dispense sequence upon receipt of a ticket dispense command from the controller. The controller is configured on the frame and is variably positional relative to the frame between different operational positions.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 20, 2020
    Inventor: James C. Kennedy