Patents by Inventor James C. Mikkelsen

James C. Mikkelsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9207249
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: December 8, 2015
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael Greenstein, Colin B Kennedy, James C Mikkelsen, Jr.
  • Publication number: 20130315781
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Application
    Filed: July 29, 2013
    Publication date: November 28, 2013
    Applicant: CALIPER LIFE SCIENCES, INC.
    Inventors: Michael Greenstein, Colin B. Kennedy, James C. Mikkelsen, JR.
  • Patent number: 8496875
    Abstract: The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: July 30, 2013
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Michael Greenstein, Colin B. Kennedy, James C. Mikkelsen, Jr.
  • Patent number: 7334630
    Abstract: Apparatus and methods according to the present invention utilize micropumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These micropumps are fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These micropumps also can allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the spatial and temporal characteristics of the device temperature profiles. Novel enclosed microchannel structures are also described.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: February 26, 2008
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7185697
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 6, 2007
    Assignee: Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7131486
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: November 7, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior Universty
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 7070681
    Abstract: A novel electrokinetic instability (EKI) micromixer and method takes advantage of the EKI to effect active rapid stirring of confluent microstreams of biomolecules without moving parts or complex microfabrication processes. The EKI is induced using an alternating current (A/C) electric field. Within seconds, the randomly fluctuating, three-dimensional velocity field created by the EKI rapidly and effectively stirs an initially heterogeneous solution and generates a homogeneous solution that is useful in a variety of biochemical and bioanalytical systems. Microfabricated on a glass substrate, the inventive EKI micromixer can be easily and advantageously integrated in molecular diagnostics apparatuses and systems, such as a chip-based “Lab-on-a-Chip” microfluidic device.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: July 4, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Juan G. Santiago, Michael H. Oddy, James C. Mikkelsen, Jr.
  • Patent number: 6991024
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: January 31, 2006
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 6942018
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Grant
    Filed: January 19, 2002
    Date of Patent: September 13, 2005
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Publication number: 20040089442
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Application
    Filed: June 27, 2003
    Publication date: May 13, 2004
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evely Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 6703074
    Abstract: A display comprised of a first component containing spheres encapsulated within a wax, and thereover and thereunder said component substrates.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: March 9, 2004
    Assignee: Xerox Corporation
    Inventors: Guerino G. Sacripante, James C. Mikkelsen, Jr.
  • Publication number: 20030164231
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 4, 2003
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 6559820
    Abstract: A display is provided with an insulative layer with electrical properties which have been selected so that the display can be addressed with a stylus and which minimizes the effects of stray triboelectrically generated charges. Also provided is a method of addressing such a display by depositing charges on a surface of the display, maintaining sufficient charge to effect an image change, and then removing the charges.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: May 6, 2003
    Assignee: Xerox Corporation
    Inventors: James C. Mikkelsen, Jr., Nicholas K. Sheridon, Edward A. Richley
  • Publication number: 20030062149
    Abstract: Apparatus and methods according to the present invention preferably utilize electroosmotic pumps that are capable of generating high pressure and flow without moving mechanical parts and the associated generation of unacceptable electrical and acoustic noise, as well as the associated reduction in reliability. These electroosmotic pumps are preferably fabricated with materials and structures that improve performance, efficiency, and reduce weight and manufacturing cost relative to presently available micropumps. These electroosmotic pumps also preferably allow for recapture of evolved gases and deposited materials, which may provide for long-term closed-loop operation. Apparatus and methods according to the present invention also allow active regulation of the temperature of the device through electrical control of the flow through the pump and can utilize multiple cooling loops to allow independent regulation of the special and temporal characteristics of the device temperature profiles.
    Type: Application
    Filed: January 19, 2002
    Publication date: April 3, 2003
    Inventors: Kenneth E. Goodson, Chuan-Hua Chen, David E. Huber, Linan Jiang, Thomas W. Kenny, Jae-Mo Koo, Daniel J. Laser, James C. Mikkelsen, Juan G. Santiago, Evelyn Ning-Yi Wang, Shulin Zeng, Lian Zhang
  • Patent number: 6507333
    Abstract: A display is provided with an insulative layer with electrical properties which have been selected so that the display can be addressed with a stylus and which minimizes the effects of stray triboelectrically generated charges. Also provided is a method of addressing such a display by depositing charges on a surface of the display, maintaining sufficient charge to effect an image change, and then removing the charges.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: January 14, 2003
    Assignee: Xerox Corporation
    Inventors: James C. Mikkelsen, Jr., Nicholas K. Sheridon, Edward A. Richley
  • Publication number: 20020125134
    Abstract: A novel electrokinetic instability (EKI) micromixer and method takes advantage of the EKI to effect active rapid stirring of confluent microstreams of biomolecules without moving parts or complex microfabrication processes. The EKI is induced using an alternating current (A/C) electric field. Within seconds, the randomly fluctuating, three-dimensional velocity field created by the EKI rapidly and effectively stirs an initially heterogeneous solution and generates a homogeneous solution that is useful in a variety of biochemical and bioanalytical systems. Microfabricated on a glass substrate, the inventive EKI micromixer can be easily and advantageously integrated in molecular diagnostics apparatuses and systems, such as a chip-based “Lab-on-a-Chip” microfluidic device.
    Type: Application
    Filed: January 24, 2002
    Publication date: September 12, 2002
    Inventors: Juan G. Santiago, Michael H. Oddy, James C. Mikkelsen
  • Publication number: 20020094377
    Abstract: A display comprised of a first component containing spheres encapsulated within a wax, and thereover and thereunder said component substrates.
    Type: Application
    Filed: March 12, 2002
    Publication date: July 18, 2002
    Applicant: Xerox Corporation
    Inventors: Guerino G. Sacripante, James C. Mikkelsen
  • Patent number: 6419982
    Abstract: A display comprised of a first component containing spheres encapsulated within a wax, and thereover and thereunder said component substrates.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: July 16, 2002
    Assignee: Xerox Corporation
    Inventors: Guerino G. Sacripante, James C. Mikkelsen, Jr.
  • Publication number: 20010051263
    Abstract: A display comprised of a first component containing spheres encapsulated within a wax, and thereover and thereunder said component substrates.
    Type: Application
    Filed: March 21, 2001
    Publication date: December 13, 2001
    Applicant: Xerox Corporation
    Inventors: Guerino G. Sacripante, James C. Mikkelsen
  • Patent number: 6243058
    Abstract: A display is provided with an insulative layer whose electrical properties have been selected so that the display can be addressed by the effects of triboelectrically generated charges and thus requires no stylus or special writing utensil. Thus, the display can be addressed by dragging a finger across the display. Alternately, the display is provided with an insulafive layer whoes electrical properties have been selected so that the display is addressed with a stylus and is immune from the effects of stray riboelectrically generated charges.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: June 5, 2001
    Assignee: Xerox Coporation
    Inventors: James C. Mikkelsen, Nicholas K. Sheridon, Edward A. Richley