Patents by Inventor James C. Peters

James C. Peters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11229883
    Abstract: A filtration system includes at least one spiral wound first filter section in fluid communication with at least one spiral wound second filter section. The first and second filter sections include: (i) a filtration membrane; (ii) a feed spacer located adjacent the filtration membrane and defining a feed flow channel; and (iii) a permeate spacer located adjacent the filtration membrane and defining a permeate flow channel. A thickness of the feed flow channel in the first filter section is different than a thickness of the feed flow channel in the second filter section, and/or an effective volume of the first filter section is different than an effective volume of the second filter section. A method of filtering a feed flow is also disclosed.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: January 25, 2022
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, James C. Peters, Scott P. Yaeger
  • Patent number: 10888821
    Abstract: A method for treating a surface of a microporous membrane includes: (1) contacting at least one surface of the membrane with a treatment composition including: (a) an acrylic polymer prepared from a mixture of vinyl monomers including: (i) a (meth)acrylic acid monomer and (ii) a silane-functional acrylic monomer; and (b) a base, where the acrylic polymer is in contact with the filler present in the matrix; and (2) subjecting the membrane of (1) to conditions sufficient to effect a condensation reaction between the filler and the acrylic polymer. A treated microporous membrane and an aqueous treatment composition are also disclosed.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 12, 2021
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, Steven E. Bowles, Cynthia Kutchko, Deena M. McHenry, Kurt G. Olson, James C. Peters, David N. Walters
  • Patent number: 10888824
    Abstract: The present invention is directed to a method for treating a surface of a filled microporous membrane. The microporous membrane includes a polyolefinic matrix, inorganic filler distributed throughout the matrix, and a network of interconnecting pores throughout the membrane. The method includes sequentially (1) contacting at least one surface of the membrane with a treatment composition of a silane-functional polyamine compound having at least one alkoxy silane group, such that the silane-functional polyamine compound is in intimate contact with the filler present in the matrix; and (2) subjecting the membrane of (1) to conditions sufficient to effect a condensation reaction between the inorganic filler and the silane-functional polyamine compound. Treated membranes also are provided.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 12, 2021
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, James C. Peters, Luciano M. Parrinello, Linda K. Anderson
  • Publication number: 20200086278
    Abstract: A method for treating a surface of a microporous membrane includes: (1) contacting at least one surface of the membrane with a treatment composition including: (a) an acrylic polymer prepared from a mixture of vinyl monomers including: (i) a (meth)acrylic acid monomer and (ii) a silane-functional acrylic monomer; and (b) a base, where the acrylic polymer is in contact with the filler present in the matrix; and (2) subjecting the membrane of (1) to conditions sufficient to effect a condensation reaction between the filler and the acrylic polymer. A treated microporous membrane and an aqueous treatment composition are also disclosed.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 19, 2020
    Inventors: Qunhui Guo, Steven E. Bowles, Cynthia Kutchko, Deena M. McHenry, Kurt G. Olson, James C. Peters, David N. Walters
  • Patent number: 10441939
    Abstract: The present invention is directed to a method for treating a surface of a filled microporous membrane. The microporous membrane includes a polyolefinic matrix, inorganic filler distributed throughout the matrix, and a network of interconnecting pores throughout the membrane. The method includes sequentially (1) contacting the membrane with a first treatment composition comprising an epoxy-silane which is in intimate contact with the inorganic filler; (2) subjecting the membrane of (1) to conditions sufficient to effect a first reaction between the inorganic filler and the silane groups of the epoxy-silane compound; (3) contacting the membrane of (2) with a second treatment composition comprising polyalkylene polyamine, an amine functional polysaccharide and/or an amino silane; and (4) subjecting the membrane of (3) to conditions sufficient to effect a second reaction. Treated membranes also are provided.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: October 15, 2019
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, Luciano M. Parrinello, James C. Peters
  • Publication number: 20190143300
    Abstract: The present invention is directed to a method for treating a surface of a filled microporous membrane. The microporous membrane includes a polyolefinic matrix, inorganic filler distributed throughout the matrix, and a network of interconnecting pores throughout the membrane. The method includes sequentially (1) contacting the membrane with a first treatment composition comprising an epoxy-silane which is in intimate contact with the inorganic filler; (2) subjecting the membrane of (1) to conditions sufficient to effect a first reaction between the inorganic filler and the silane groups of the epoxy-silane compound; (3) contacting the membrane of (2) with a second treatment composition comprising polyalkylene polyamine, an amine functional polysaccharide and/or an amino silane; and (4) subjecting the membrane of (3) to conditions sufficient to effect a second reaction. Treated membranes also are provided.
    Type: Application
    Filed: January 9, 2019
    Publication date: May 16, 2019
    Inventors: Qunhui Guo, Luciano M. Parrinello, James C. Peters
  • Patent number: 10183274
    Abstract: The present invention is directed to a method for treating a surface of a filled microporous membrane. The microporous membrane includes a polyolefinic matrix, inorganic filler distributed throughout the matrix, and a network of interconnecting pores throughout the membrane. The method includes sequentially (1) contacting the membrane with a first treatment composition comprising an epoxy-silane which is in intimate contact with the inorganic filler; (2) subjecting the membrane of (1) to conditions sufficient to effect a first reaction between the inorganic filler and the silane groups of the epoxy-silane compound; (3) contacting the membrane of (2) with a second treatment composition comprising polyalkylene polyamine, an amine functional polysaccharide and/or an amino silane; and (4) subjecting the membrane of (3) to conditions sufficient to effect a second reaction. Treated membranes also are provided.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 22, 2019
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, James C. Peters, Luciano M. Parrinello
  • Publication number: 20180133686
    Abstract: The present invention is directed to a method for treating a surface of a filled microporous membrane. The microporous membrane includes a polyolefinic matrix, inorganic filler distributed throughout the matrix, and a network of interconnecting pores throughout the membrane. The method includes sequentially (1) contacting the membrane with a first treatment composition comprising an epoxy-silane which is in intimate contact with the inorganic filler; (2) subjecting the membrane of (1) to conditions sufficient to effect a first reaction between the inorganic filler and the silane groups of the epoxy-silane compound; (3) contacting the membrane of (2) with a second treatment composition comprising polyalkylene polyamine, an amine functional polysaccharide and/or an amino silane; and (4) subjecting the membrane of (3) to conditions sufficient to effect a second reaction. Treated membranes also are provided.
    Type: Application
    Filed: November 16, 2016
    Publication date: May 17, 2018
    Inventors: Qunhui Guo, James C. Peters, Luciano M. Parrinello
  • Publication number: 20180133664
    Abstract: The present invention is directed to a method for treating a surface of a filled microporous membrane. The microporous membrane includes a polyolefinic matrix, inorganic filler distributed throughout the matrix, and a network of interconnecting pores throughout the membrane. The method includes sequentially (1) contacting at least one surface of the membrane with a treatment composition of a silane-functional polyamine compound having at least one alkoxy silane group, such that the silane-functional polyamine compound is in intimate contact with the filler present in the matrix; and (2) subjecting the membrane of (1) to conditions sufficient to effect a condensation reaction between the inorganic filler and the silane-functional polyamine compound. Treated membranes also are provided.
    Type: Application
    Filed: November 16, 2016
    Publication date: May 17, 2018
    Inventors: Qunhui Guo, James C. Peters, Luciano M. Parrinello, Linda K. Anderson
  • Publication number: 20180104651
    Abstract: A filtration system includes at least one spiral wound first filter section in fluid communication with at least one spiral wound second filter section. The first and second filter sections include: (i) a filtration membrane; (ii) a feed spacer located adjacent the filtration membrane and defining a feed flow channel; and (iii) a permeate spacer located adjacent the filtration membrane and defining a permeate flow channel. A thickness of the feed flow channel in the first filter section is different than a thickness of the feed flow channel in the second filter section, and/or an effective volume of the first filter section is different than an effective volume of the second filter section. A method of filtering a feed flow is also disclosed.
    Type: Application
    Filed: October 17, 2017
    Publication date: April 19, 2018
    Inventors: Qunhui Guo, James C. Peters, Scott P. Yaeger
  • Patent number: 9896353
    Abstract: The present invention is directed to methods of treating a hydrocarbon-containing waste stream to form a hydrocarbon-containing retentate and an aqueous permeate which is substantially free of hydrocarbon. The method includes passing the hydrocarbon-containing waste stream through a microporous membrane to yield the hydrocarbon-containing retentate and the aqueous permeate. The membrane comprises a substantially hydrophobic, polymeric matrix and substantially hydrophilic, finely divided, particulate filler distributed throughout the matrix. The polymeric matrix has pores with a volume average diameter less than 1.0 micron, and at least 50 percent of the pores have a mean diameter of less than 0.35 micron.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 20, 2018
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Qunhui Guo, James C. Peters
  • Publication number: 20170129789
    Abstract: The present invention is directed to methods of treating a hydrocarbon-containing waste stream to form a hydrocarbon-containing retentate and an aqueous permeate which is substantially free of hydrocarbon. The method includes passing the hydrocarbon-containing waste stream through a microporous membrane to yield the hydrocarbon-containing retentate and the aqueous permeate. The membrane comprises a substantially hydrophobic, polymeric matrix and substantially hydrophilic, finely divided, particulate filler distributed throughout the matrix. The polymeric matrix has pores with a volume average diameter less than 1.0 micron, and at least 50 percent of the pores have a mean diameter of less than 0.35 micron.
    Type: Application
    Filed: October 21, 2016
    Publication date: May 11, 2017
    Inventors: Qunhui Guo, James C. Peters
  • Patent number: 8210002
    Abstract: Various embodiments of the present invention relate to glass fiber forming bushings, to methods of controlling the temperature of bushings having multiple segments, to systems of controlling the temperature of bushings having multiple segments, and to other systems and methods. In one embodiment, a method of controlling the temperature of a bushing having multiple segments comprises forming a plurality of filaments from a bushing comprising at least two segments, gathering the filaments into at least two ends, measuring the size of each of the at least two ends, comparing the measured size of the at least two ends to a desired end size, adjusting the amount of current passing through the at least two bushing segments in response to the end size comparisons.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: July 3, 2012
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Pu Gu, Timothy S. McAbee, James C. Peters, Mark Patrick DeLong
  • Publication number: 20110259057
    Abstract: Various embodiments of the present invention relate to glass fiber forming bushings, to methods of controlling the temperature of bushings having multiple segments, to systems of controlling the temperature of bushings having multiple segments, and to other systems and methods. In one embodiment, a method of controlling the temperature of a bushing having multiple segments comprises forming a plurality of filaments from a bushing comprising at least two segments, gathering the filaments into at least two ends, measuring the size of each of the at least two ends, comparing the measured size of the at least two ends to a desired end size, adjusting the amount of current passing through the at least two bushing segments in response to the end size comparisons.
    Type: Application
    Filed: July 7, 2011
    Publication date: October 27, 2011
    Applicant: PPG Industries Ohio, Inc.
    Inventors: Pu Gu, Timothy S. McAbee, James C. Peters, Mak Patrick Delong
  • Patent number: 7980097
    Abstract: Various embodiments of the present invention relate to glass fiber forming bushings, to methods of controlling the temperature of bushings having multiple segments, to systems of controlling the temperature of bushings having multiple segments, and to other systems and methods. In one embodiment, a method of controlling the temperature of a bushing having multiple segments comprises forming a plurality of filaments from a bushing comprising at least two segments, gathering the filaments into at least two ends, measuring the size of each of the at least two ends, comparing the measured size of the at least two ends to a desired end size, adjusting the amount of current passing through the at least two bushing segments in response to the end size comparisons.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 19, 2011
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Pu Gu, Timothy S. McAbee, James C. Peters, Mark Patrick DeLong
  • Publication number: 20030215633
    Abstract: A multi-end fiber glass roving comprises a plurality of fiber glass ends and at least one bicomponent string binder. The bicomponent string binder may comprise at least one bundle of bicomponent string binder filaments, each filament having a core and an outer sheath.
    Type: Application
    Filed: March 13, 2003
    Publication date: November 20, 2003
    Inventors: Steven J. Morris, James C. Peters, Wen Li
  • Publication number: 20030172683
    Abstract: A fiber glass roving comprises a plurality of ends from a plurality of direct draw packages, each direct draw package having a single end. Ends from a plurality of direct draw packages may be combined to form a roving at a point of use, such as just prior to chopping the roving in a chopping gun. Assembled rovings may also be formed by winding a plurality of ends from a plurality of direct draw packages, each direct draw package having a single end, into an assembled roving package.
    Type: Application
    Filed: February 11, 2003
    Publication date: September 18, 2003
    Inventors: Chi Tang, Paul A. Westbrook, Christopher G. Cross, Pu Gu, James C. Peters, John L. Sarratt
  • Patent number: D464325
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: October 15, 2002
    Inventors: James C. Peters, Daniel J. Peters
  • Patent number: D549127
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: August 21, 2007
    Inventor: James C. Peters, Jr.