Patents by Inventor James C. Stevens

James C. Stevens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6849704
    Abstract: Substantially linear olefin polymers having a melt flow ratio, I10/I2,?5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn?(I10/I2)?4.63, and a critical shear stress at onset of gross melt fracture of greater than about 4×106 dyne/cm2 and their method of manufacture are disclosed. The substantially linear olefin polymers preferably have at least about 0.01 long chain branches/1000 carbons and a molecular weight distribution from about 1.5 to about 2.5. The new polymers have improved processability over conventional olefin polymers and are useful in producing fabricated articles such as fibers, films, and molded parts.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: February 1, 2005
    Assignee: Dow Global Technologies Inc.
    Inventors: Shih-Yaw Lai, George W. Knight, John R. Wilson, James C. Stevens, Pak-Wing Steve Chum
  • Patent number: 6844399
    Abstract: Sulfonated substantially random interpolymers made from monomer components comprise from 1 to 65 mole percent of (a) at least one vinyl or vinylidene aromatic monomer, or (b) at least one hindered aliphatic or cycloaliphatic vinylidene monomer, or (c) a combination of at least one vinyl or vinylidene aromatic monomer and at lest one hindered aliphatic or cycloaliphatic vinylidene monomer, and from 35 to 99 mole percent of at least one aliphatic ?-olefin having from 2 to 20 carbon atoms; and optionally, from 0 to 20 mole percent of a diene containing from 4 to 20 carbon atoms; wherein the sulfonated interpolymer contains at least one mer (or moiety) of a group represented by the formula —SO3?M where M is hydrogen or a group 1, 7 or 12 metal in ionic form or combination thereof. Blends of these polymers with polyamides and polyolefins are made.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: January 18, 2005
    Assignee: Dow Global Technologies, Inc.
    Inventors: Yunwa W. Cheung, Stephen F. Hahn, James C. Stevens, Francis J. Timmers, Gregory F. Schmidt, Thoi H. Ho, Robert H. Terbrueggen
  • Publication number: 20040249084
    Abstract: Polymer blends that exhibit good impact resistance comprise a crystalline polypropylene matrix and a partly crystalline copolymer impact modifier with a molecular weight lower than that of the matrix polymer. The matrix polymer can comprise any crystalline propylene homo- or copolymer. The impact modifying copolymers are characterized as comprising at least about 60 weight percent (wt %) of units derived from propylene and, in certain embodiments, as having at least one, preferably two or more, of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about −1.
    Type: Application
    Filed: July 2, 2004
    Publication date: December 9, 2004
    Inventors: James C. Stevens, Daniel D. Vanderlende, Patricia Ansems
  • Patent number: 6825369
    Abstract: A monocyclopentadienyl or substituted monocyclopentadienyl metal complex containing compound useful as a polymerization catalyst corresponding to the formula: CpMXn+A− wherein: Cp is an &eegr;5-substituted cyclopentadienyl group optionally covalently bonded to M through a substituent, said Cp being substituted in at least one occurrence with an alkoxy or aryloxy group; M is a metal of Group 3-10 or the Lanthanide Series of the Periodic Table bound in an &eegr;hu 5 bonding mode to the cyclopentadienyl or substituted cyclopentadienyl group; X each occurrence independently is selected from the group consisting of hydride, halo, alkyl, aryl, silyl, germyl, aryloxy, alkoxy, amide, siloxy, neutral Lewis base ligands and combinations thereof having up to 20 non-hydrogen atoms, and optionally one X together with Cp forms a metallocycle with M; R is alkyl or aryl of up to 10 carbons; n is one or two depending on the valence of M; and A is a noncoordinating, compatible anion of a Bronsted acid salt.
    Type: Grant
    Filed: March 10, 1994
    Date of Patent: November 30, 2004
    Assignee: The Dow Chemical Company
    Inventors: James C. Stevens, David R. Neithamer
  • Publication number: 20040220050
    Abstract: Group 4 metal complexes useful as addition polymerization catalysts of the formula: 1
    Type: Application
    Filed: May 2, 2003
    Publication date: November 4, 2004
    Inventors: Kevin A. Frazier, Harold Boone, Paul C. Vosejpka, James C. Stevens
  • Patent number: 6806326
    Abstract: Metal complexes having constrained geometry and a process for preparation thereof, addition polymerization catalysts formed therefrom, processes for preparation of such addition polymerization catalysts, methods of use, and novel polymers formed thereby, including EIPE resins and pseudo-random copolymers, are disclosed and claimed.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: October 19, 2004
    Assignee: The Dow Chemical Company
    Inventors: James C. Stevens, Robert K. Rosen, Peter N. Nickias, David R. Wilson
  • Patent number: 6780954
    Abstract: Elastic ethylene polymers are disclosed which have processability similar to highly branched low density polyethylene (LDPE), but the strength and toughness of linear low density polyethylene (LLDPE). The polymers have processing indices (PI's) less than or equal to 70 percent of those of a comparative linear ethylene polymer and a critical shear rate at onset of surface melt fracture of at least 50 percent greater than the critical shear rate at the onset of surface melt fracture of a traditional linear ethylene polymer at about the same I2 and Mw/Mn. The novel polymers can also have from about 0.01 to about 3 long chain branches/1000 total carbons and have higher low/zero shear viscosity and lower high shear viscosity than comparative liner ethylene polymers. The novel polymers can also be characterized as having a melt flow ratio, I10/I2, ≧5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn≦(I10/I2)−4.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: August 24, 2004
    Assignee: Dow Global Technologies, Inc.
    Inventors: Shih-Yaw Lai, John R. Wilson, George W. Knight, James C. Stevens
  • Patent number: 6737484
    Abstract: Substantially linear olefin polymers having a melt flow ratio, I10/I2, ≧5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn≦(I10/I2)−4.63, and a critical shear stress at onset of gross melt fracture of greater than about 4×106 dyne/cm2 and their method of manufacture are disclosed. The substantially linear olefin polymers preferably have at least about 0.01 long chain branches/1000 carbons and a molecular weight distribution from about 1.5 to about 2.5. The new polymers have improved processability over conventional olefin polymers and are useful in producing fabricated articles such as fibers, films, and molded parts.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: May 18, 2004
    Assignee: Dow Global Technologies Inc.
    Inventors: Shih-Yaw Lai, John R. Wilson, George W. Knight, James C. Stevens, Pak-Wing Steve Chum
  • Publication number: 20040082741
    Abstract: Substantially linear olefin polymers having a melt flow ratio, I10/I2, ≧5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn≦(I10/I2)−463, and a critical shear stress at onset of gross melt fracture of greater than about 4×106 dyne/cm2 and their method of manufacture are disclosed. The substantially linear olefin polymers preferably have at least about 0.01 long chain branches/1000 carbons and a molecular weight distribution from about 1.5 to about 2.5. The new polymers have improved processability over conventional olefin polymers and are useful in producing fabricated articles such as fibers, films, and molded parts.
    Type: Application
    Filed: December 4, 2003
    Publication date: April 29, 2004
    Inventors: Shih-Yaw Lai, George W. Knight, John R. Wilson, James C. Stevens, Pak-Wing Steve Chum
  • Patent number: 6696379
    Abstract: A supported catalyst composition comprising: A1) a mixture of aluminum containing Lewis acids of the formulas: [(—AlQ1—O—)z(—AlArf—O—)z′] and (Arfz″Al2Q16−z″)  where; Q1 independently each occurrence is C1-20 alkyl; Arf is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms; z is a number from 1 to 50; z′ is a number from 1 to 50; and z″ is an number from 0 to 6; or A2) a fluorohydrocarbyl-substituted alumoxane compound corresponding to the formula: R1—(AlR3O)m—R2,  wherein: R1 and R2 independently each occurrence is a C1-40 aliphatic or aromatic group or a fluorinated derivative thereof or R1 and R2 together form a covalent bond; R3 independently each occurrence is a monovalent, fluorinated organic group containing from 1 to 100 carbon atoms or R1, with the proviso that in at least one occurrence per molecule, R3 is a monovalent, fluorinated organic group containing from 1
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: February 24, 2004
    Assignee: The Dow Chemical Company
    Inventors: Edmund M. Carnahan, Grant B. Jacobsen, Eugene Y. Chen, James C. Stevens
  • Publication number: 20030204017
    Abstract: Unique copolymers comprising propylene, ethylene and/or one or more unsaturated comonomers are characterized as having: at least one, preferably more than one, of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about −1.20, (iv) a DSC curve with a Tme that remains essentially the same and a Tmax that decreases as the amount of comonomer in the copolymer is increased, and (v) an X-ray diffraction pattern that reports more gamma-form crystals than a comparable copolymer prepared with a Ziegler-Natta catalyst These polypropylene polymers are made using a nonmetallocene, metal-centered, heteroaryl ligand catalyst. These polymers can be blended with other polymers, and are useful in the manufacture of films, sheets, foams, fibers and molded articles.
    Type: Application
    Filed: May 5, 2002
    Publication date: October 30, 2003
    Inventors: James C. Stevens, Daniel D. Vanderlende
  • Publication number: 20030195300
    Abstract: A method of nucleating a propylene homo- or copolymer, the method comprising contacting the propylene polymer with a semi-crystalline branched or coupled polymeric nucleating agent under nucleation conditions. In one embodiment, the propylene homopolymer is characterized as having 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity. In another embodiment, the copolymer is characterized as comprising at least about 60 weight percent (wt %) of units derived from propylene, and as having at least one of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content, i.e., the units derived from ethylene and/or the unsaturated comonomer(s), of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about −1.
    Type: Application
    Filed: November 5, 2002
    Publication date: October 16, 2003
    Inventors: James C. Stevens, Daniel D. Vanderlende, Patricia Ansems
  • Publication number: 20030195320
    Abstract: Elastic ethylene polymers are disclosed which have, processability similar to highly branched low density polyethylene (LDPE), but the strength and toughness of linear low density polyethylene (LLDPE). The polymers have processing indices (PI's) less than or equal to 70 percent of those of a comparative linear ethylene polymer and a critical shear rate at onset of surface melt fracture of at least 50 percent greater than the critical shear rate at the onset of surface melt fracture of a traditional linear ethylene polymer at about the same I2 and Mw/Mn. The novel polymers can also have from about 0.01 to about 3 long chain branches/1000 total carbons and have higher low/zero shear viscosity and lower high shear viscosity than comparative liner ethylene polymers. T novel polymers can also be characterized as having a melt flow ratio, I10/I2,≧5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn≦(I10/I2)−4.
    Type: Application
    Filed: January 30, 2003
    Publication date: October 16, 2003
    Inventors: Shih-Yaw Lai, John R. Wilson, George W. Knight, James C. Stevens
  • Publication number: 20030195299
    Abstract: Polymer blends that exhibit good impact resistance comprise a crystalline polypropylene matrix and a partly crystalline copolymer impact modifier with a molecular weight lower than that of the matrix polymer. The matrix polymer can comprise any crystalline propylene homo- or copolymer. The impact modifying copolymers are characterized as comprising at least about 60 weight percent (wt %) of units derived from propylene and, in certain embodiments, as having at least one, preferably two or more, of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, Six, greater than about −1.
    Type: Application
    Filed: November 5, 2002
    Publication date: October 16, 2003
    Inventors: James C. Stevens, Daniel D. Vanderlende, Patricia Ansems
  • Publication number: 20030176611
    Abstract: Fibers comprising a propylene homopolymer or a copolymer of propylene and at least one of ethylene and one or more unsaturated comonomers exhibit desirable properties. The homopolymers are characterized as having 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity. The copolymers are characterized as (A) comprising at least about 60 weight percent (wt %) of units derived from propylene, and (B) having at least one of the following properties: (i) 13C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity, (ii) a B-value greater than about 1.4 when the comonomer content of the copolymer is at least about 3 wt %, (iii) a skewness index, S1x, greater than about −1.
    Type: Application
    Filed: November 5, 2002
    Publication date: September 18, 2003
    Inventors: James C. Stevens, Daniel D. Vanderlende, Andy C. Chang
  • Publication number: 20030149189
    Abstract: Sulfonated substantially random interpolymers made from monomer components comprise from 1 to 65 mole percent of (a) at least one vinyl or vinylidene aromatic monomer, or (b) at least one hindered aliphatic or cycloaliphatic vinylidene monomer, or (c) a combination of at least one vinyl or vinylidene aromatic monomer and at lest one hindered aliphatic or cycloaliphatic vinylidene monomer, and from 35 to 99 mole percent of at least one aliphatic &agr;-olefin having from 2 to 20 carbon atoms; and optionally, from 0 to 20 mole percent of a diene containing from 4 to 20 carbon atoms; wherein the sulfonated interpolymer contains at least one mer (or moiety) of a group represented by the formula —SO3−M where M is hydrogen or a group 1, 7 or 12 metal in ionic form or combination thereof. Blends of these polymers with polyamides and polyolefins are made.
    Type: Application
    Filed: October 7, 2002
    Publication date: August 7, 2003
    Applicant: Dow Global Technologies Inc.
    Inventors: Yunwa W. Cheung, Stephen F. Hahn, James C. Stevens, Francis J. Timmers, Gregory F. Schmidt, Thoi H. Ho, Robert H. Terbrueggn
  • Publication number: 20030120004
    Abstract: Substantially linear olefin polymers having a melt flow ratio, I10/I2, ≧5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn≦(I10/I2)−4.63, and a critical shear stress at onset of gross melt fracture of greater than about 4×106 dyne/cm2 and their method of manufacture are disclosed. The substantially linear olefin polymers preferably have at least about 0.01 long chain branches/1000 carbons and a molecular weight distribution from about 1.5 to about 2.5. The new polymers have improved processability over conventional olefin polymers and are useful in producing fabricated articles such as fibers, films, and molded parts.
    Type: Application
    Filed: October 11, 2002
    Publication date: June 26, 2003
    Inventors: Shih-Yaw Lai, John R. Wilson, George W. Knight, James C. Stevens, Pak-Wing Steve Chum
  • Publication number: 20030088037
    Abstract: A polymerization process comprises contacting one or more olefinic comonomers in the presence of at least a high molecular weight catalyst and at least a low molecular weight catalyst in a single reactor; and effectuating the polymerization of the olefinic comonomers in the reactor to obtain an olefin polymer. Preferably, both catalysts have the ability to incorporate a substantially similar amount of comonomers in the olefin polymer. The polymers produced by the process may have a relatively higher level of long chain branching while maintaining a relatively narrow molecular weight distribution, i.e., MWD less than about 6. These interpolymers may exhibit processability similar to or better than LDPE but have physical properties similar to metallocene catalyzed polymers.
    Type: Application
    Filed: March 15, 2002
    Publication date: May 8, 2003
    Applicant: The Dow Chemical Company
    Inventors: James C. Stevens, Daniel D. VanderLende
  • Publication number: 20030078357
    Abstract: Elastic ethylene polymers are disclosed which have processability similar to highly branched low density polyethylene (LDPE), but the strength and toughness of linear low density polyethylene (LLDPE). The polymers have processing indices (PI's) less than or equal to 70 percent of those of a comparative linear ethylene polymer and a critical shear rate at onset of surface melt fracture of at least 50 percent greater than the critical shear rate at the onset of surface melt fracture of a traditional linear ethylene polymer at about the same I2 and Mw/Mn. The novel polymers can also have from about 0.01 to about 3 long chain branches/1000 total carbons and have higher low/zero shear viscosity and lower high shear viscosity than comparative linear ethylene polymers. The novel polymers can also be characterized as having a melt flow ratio, I10/I2,≧5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn≦(I10/I2)−4.
    Type: Application
    Filed: June 20, 2002
    Publication date: April 24, 2003
    Inventors: Shih-Yaw Lai, John R. Wilson, George W. Knight, James C. Stevens
  • Patent number: 6548611
    Abstract: Substantially linear olefin polymers having a melt flow ratio, I10/I2, ≧5.63, a molecular weight distribution, Mw/Mn, defined by the equation: Mw/Mn≦(I10/I2)−4.63, and a critical shear stress at onset of gross melt fracture of greater than about 4×106 dyne/cm2 and their method of manufacture are disclosed. The substantially linear olefin polymers preferably have at least about 0.01 long chain branches/1000 carbons and a molecular weight distribution from about 1.5 to about 2.5. The new polymers have improved processability over conventional olefin polymers and are useful in producing fabricated articles such as fibers, films, and molded parts.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: April 15, 2003
    Assignee: Dow Global Technologies Inc.
    Inventors: Shih-Yaw Lai, George W. Knight, John R. Wilson, James C. Stevens, Pak-Wing Steve Chum