Patents by Inventor James Courtney Davidson

James Courtney Davidson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8489193
    Abstract: A flexible circuit electrode array, which comprises: a polymer base layer; metal traces deposited on said polymer base layer, including electrodes suitable to stimulate neural tissue; a polymer top layer deposited on said polymer base layer and said metal traces; and a partial or entire coating of the base and top layer by a soft polymer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: July 16, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: David Daomin Zhou, Robert J. Greenberg, Jordan Matthew Neysmith, Boon-Khai Ng, James Singleton Little, Neil Hamilton Talbot, Satinderpall Singh Pannu, James Courtney Davidson, Phillipe John Tabada
  • Publication number: 20120239126
    Abstract: A visual prosthesis which includes a hermetic package and flexible circuit electrode array is disclosed. The hermetic package includes electrode drivers and contacts. The flexible circuit electrode array includes a polymer base layer, metal traces, including electrodes suitable to stimulate visual neural tissue and bond pads bonded to contacts on the hermetic package, all deposited on the polymer base layer, a polymer top layer deposited on the polymer base layer and deposited on the metal traces, a partial or an entire coating of the polymer base layer and of the polymer top layer by a soft polymer that is softer than the polymer base layer; and the polymer base layer and the polymer top layer contain a plurality of aligned holes to facilitate bonding of the soft polymer.
    Type: Application
    Filed: April 30, 2012
    Publication date: September 20, 2012
    Inventors: David Daomin Zhou, Robert J. Greenberg, Jordan Matthew Nevsmith, Boon-Khai Ng, James Singleton Little, Neil Hamilton Talbot, Satinderpall Singh Pannu, James Courtney Davidson, Phillipe John Tabada
  • Patent number: 8209023
    Abstract: A flexible circuit electrode array and method of fabrication having a polymer base layer; metal traces deposited on the polymer base layer, including electrodes to stimulate tissue; a polymer top layer deposited on the polymer base layer and metal traces; and a coating of the base and top layer by a soft polymer. A method of preparing a flexible circuit electrode array, comprising: providing a first soft polymer layer; depositing a first a base layer on the first soft polymer layer; providing a metal thin film on the base layer; depositing a top polymer layer on the metal thin film; providing holes in the top polymer layer; depositing a second soft polymer layer on the top polymer layer; providing holes in the second soft polymer layer for bond pads and electrodes; and preparing electrodes in the provided holes.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 26, 2012
    Assignee: Second Sight Medical Products, Inc.
    Inventors: David Daomin Zhou, Robert J. Greenberg, Jordan Matthew Neysmith, Boon-Khai Ng, James Singleton Little, Neil Hamilton Talbot, Satinderpall Singh Pannu, James Courtney Davidson, Phillipe John Tabada, Melody Tabada, legal representative
  • Patent number: 8202566
    Abstract: A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: June 19, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James Courtney Davidson, Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Armando R. Tovar
  • Patent number: 7342311
    Abstract: A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: March 11, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Klint A. Rose, James Courtney Davidson, Mark S. Strauch
  • Patent number: 7337012
    Abstract: A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: February 26, 2008
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Mariam N. Maghribi, Peter A. Krulevitch, James Courtney Davidson, Thomas S. Wilson, Julie K. Hamilton, William J. Benett, Armando R. Tovar
  • Patent number: 7035692
    Abstract: A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: April 25, 2006
    Assignee: The Regents of the University of California
    Inventors: Mariam N. Maghribi, Peter A. Krulevitch, James Courtney Davidson, Julie K. Hamilton
  • Patent number: 7030411
    Abstract: A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
    Type: Grant
    Filed: September 13, 2004
    Date of Patent: April 18, 2006
    Assignee: The Regents of the University of California
    Inventors: Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Klint A. Rose, James Courtney Davidson, Mark S. Strauch
  • Patent number: 7005179
    Abstract: A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: February 28, 2006
    Assignee: The Regents of the University of California
    Inventors: James Courtney Davidson, Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Armando R. Tovar
  • Patent number: 6991963
    Abstract: A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 31, 2006
    Assignee: The Regents of the University of California
    Inventors: Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Klint A. Rose, James Courtney Davidson, Mark S. Strauch
  • Patent number: 6878643
    Abstract: A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: April 12, 2005
    Assignee: The Regents of the University of California
    Inventors: Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Klint A. Rose, James Courtney Davidson, Mark S. Strauch
  • Publication number: 20040243204
    Abstract: A stretchable electronic circuit or electronic device and a polymer-based process to produce a circuit or electronic device containing a stretchable conducting circuit. The stretchable electronic apparatus has a central longitudinal axis and the apparatus is stretchable in a longitudinal direction generally aligned with the central longitudinal axis. The apparatus comprises a stretchable polymer body and at least one circuit line operatively connected to the stretchable polymer body. The circuit line extends in the longitudinal direction and has a longitudinal component that extends in the longitudinal direction and has an offset component that is at an angle to the longitudinal direction. The longitudinal component and the offset component allow the apparatus to stretch in the longitudinal direction while maintaining the integrity of the circuit line.
    Type: Application
    Filed: April 16, 2004
    Publication date: December 2, 2004
    Applicant: The Regents of the University of California
    Inventors: Mariam N. Maghribi, Peter A. Krulevitch, James Courtney Davidson, Thomas S. Wilson, Julie K. Hamilton, William J. Benett, Armando R. Tovar
  • Publication number: 20040209396
    Abstract: A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
    Type: Application
    Filed: April 28, 2004
    Publication date: October 21, 2004
    Applicant: The Regents of the University of California
    Inventors: Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Klint A. Rose, James Courtney Davidson, Mark S. Strauch
  • Publication number: 20040121528
    Abstract: A peel and stick electronic system comprises a silicone body, and at least one electronic unit operatively connected to the silicone body. The electronic system is produce by providing a silicone layer on a substrate, providing a metal layer on the silicone layer, and providing at least one electronic unit connected to the metal layer.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Applicant: The Regents of the University of California
    Inventors: Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Klint A. Rose, James Courtney Davidson, Mark S. Strauch
  • Publication number: 20040018297
    Abstract: A system of metalization in an integrated polymer microsystem. A flexible polymer substrate is provided and conductive ink is applied to the substrate. In one embodiment the flexible polymer substrate is silicone. In another embodiment the flexible polymer substrate comprises poly(dimethylsiloxane).
    Type: Application
    Filed: February 20, 2003
    Publication date: January 29, 2004
    Applicant: The Regents of the University of California
    Inventors: James Courtney Davidson, Peter A. Krulevitch, Mariam N. Maghribi, William J. Benett, Julie K. Hamilton, Armando R. Tovar