Patents by Inventor James D. Dale

James D. Dale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9028440
    Abstract: An occluder, and methods for occlusion, that employs first and second opposed occluding members associated with each other, a tube contacting member connected to, or comprising at least a portion of, at least one of the first and second occluding members, and a force actuator constructed and positioned to apply a force to at least one of the first and second occluding members. Application of the force by the force actuator may cause the tube contacting member to move between a tube occluding and an open position. A release member may be configured and positioned to enable an operator to manually move the tube contacting member from the tube occluding position to the open position even with no force applied to the at least one of the first and second occluding members by the force actuator.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 12, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, James D. Dale, Jesse T. Bodwell, Jason M. Overson
  • Publication number: 20150125319
    Abstract: A pumping cassette including a housing having at least two inlet fluid lines and at least two outlet fluid lines. At least one balancing pod within the housing and in fluid connection with the fluid paths. The balancing pod balances the flow of a first fluid and the flow of a second fluid such that the volume of the first fluid equals the volume of the second fluid. The balancing pod also includes a membrane that forms two balancing chambers. Also included in the cassette is at least two reciprocating pressure displacement membrane pumps. The pumps are within the housing and they pump the fluid from a fluid inlet to a fluid outlet line and pump the second fluid from a fluid inlet to a fluid outlet.
    Type: Application
    Filed: January 5, 2015
    Publication date: May 7, 2015
    Applicant: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Michael J. Wilt, Kevin L. Grant, James D. Dale, Brian D. Tracey
  • Patent number: 9022969
    Abstract: A medical infusion fluid handling system, such as an automated peritoneal dialysis system, may be arranged to de-cap and connect one or more lines (such as solution lines) with one or more spikes or other connection ports on a fluid handling cassette. This feature may reduce a likelihood of contamination since no human interaction is required to de-cap and connect the one or more lines and the one or more spikes. For example, the automated peritoneal dialysis system may include a carriage arranged to receive the one or more lines each having a connector end and a cap. The carriage may move along a first direction so as to move the connector ends of the one or more lines along the first direction, and a cap stripper may be arranged to engage with the caps on the one or more lines on the carriage. The cap stripper may move in a second direction transverse to the first direction, as well as to move with the carriage along the first direction.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: May 5, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, David W. McGill, David J. Hibbard, James D. Dale, Matthew J. Finch, Jesse T. Bodwell, Jason A. Demers
  • Patent number: 8992189
    Abstract: A cassette integrated system. The cassette integrated system includes a mixing cassette, a balancing cassette, a middle cassette fluidly connected to the mixing cassette and the balancing cassette and at least one pod. The mixing cassette is fluidly connected to the middle cassette by at least one fluid line and the middle cassette is fluidly connected to the balancing cassette by at least one fluid line. The at least one pod is connected to at least two of the cassettes wherein the pod is located in an area between the cassettes.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 31, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Michael J. Wilt, Kevin L. Grant, James D. Dale, Jason A. Demers, Brian D. Tracey
  • Patent number: 8985133
    Abstract: A cassette integrated system. The cassette integrated system includes a mixing cassette, a balancing cassette, a middle cassette fluidly connected to the mixing cassette and the balancing cassette and at least one pod. The mixing cassette is fluidly connected to the middle cassette by at least one fluid line and the middle cassette is fluidly connected to the balancing cassette by at least one fluid line. The at least one pod is connected to at least two of the cassettes wherein the pod is located in an area between the cassettes.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 24, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Kevin L. Grant, James D. Dale, Jason A. Demers, Michael J. Wilt
  • Patent number: 8979788
    Abstract: A cardiopulmonary bypass system utilizing membrane-based reciprocating positive displacement blood pumps (“pod pumps”). In one aspect, the pod pumps are constructed to provide reduced shear forces on the blood being pumped. In another aspect blood flow through the pod pumps can be controlled by a controller using information from pressure sensors in the control chamber of the pod pumps. In another aspect, the pod pumps are included on a disposable unit that can be received and held by a receptacle means on a base unit, the base unit also providing pressurized control fluid to the pod pumps on the disposable unit through the receptacle means.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: March 17, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Larry B. Gray, James D. Dale, N. Christopher Perry, David E. Altobelli
  • Patent number: 8968232
    Abstract: Embodiments of the present invention relate generally to heat-exchanger systems that can be used to heat or cool a fluid such as blood. Pod pumps that provide low shear and low turbulence may be used in such systems, particularly for systems that pump blood. A certain heat-exchanger system used to heat blood or other fluids may be used to provide whole-body hyperthermic treatments or regional hyperthermic chemotherapy treatments. A disposable unit may be used to separate the fluid path from the fluid control systems. The disposable unit typically includes a heat-exchanger component that is received by a corresponding heat exchanger in a base unit. Fluid pumped through the heat-exchanger component is heated by the heat exchanger.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: March 3, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Jason A. Demers, David E. Altobelli, Larry B. Gray, N. Christopher Perry, Brian Tracey, James D. Dale, Dirk A. van der Merwe, Kingston Owens
  • Publication number: 20150057603
    Abstract: An occluder, and methods for occlusion, that employs first and second opposed occluding members associated with each other, a tube contacting member connected to, or comprising at least a portion of, at least one of the first and second occluding members, and a force actuator constructed and positioned to apply a force to at least one of the first and second occluding members. Application of the force by the force actuator may cause the tube contacting member to move between a tube occluding and an open position. A release member may be configured and positioned to enable an operator to manually move the tube contacting member from the tube occluding position to the open position even with no force applied to the occluding member by the force actuator. In one embodiment, the force actuator may apply a force sufficient to bend both the first and second occluding members, so that upon application of the force by the force actuator (such as an air bladder), the first and second occluding members (e.g.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 26, 2015
    Applicant: DEKA Products Limited Partnership
    Inventors: Simon C. Helmore, James D. Dale, Jesse T. Bodwell, Jason M. Overson
  • Publication number: 20150050166
    Abstract: Embodiments of the present invention relate generally to certain types of reciprocating positive-displacement pumps (which may be referred to hereinafter as “pods,” “pump pods,” or “pod pumps”) used to pump fluids, such as a biological fluid (e.g., blood or peritoneal fluid), a therapeutic fluid (e.g., a medication solution), or a surfactant fluid. The pumps may be configured specifically to impart low shear forces and low turbulence on the fluid as the fluid is pumped from an inlet to an outlet. Such pumps may be particularly useful in pumping fluids that may be damaged by such shear forces (e.g., blood, and particularly heated blood, which is prone to hemolysis) or turbulence (e.g., surfectants or other fluids that may foam or otherwise be damaged or become unstable in the presence of turbulence).
    Type: Application
    Filed: October 27, 2014
    Publication date: February 19, 2015
    Applicant: DEKA Products Limited Partnership
    Inventors: Brian D. Tracey, Larry B. Gray, Jason A. Demers, James D. Dale, N. Christopher Perry, Michael J. Wilt
  • Patent number: 8926294
    Abstract: A pumping cassette including a housing having at least two inlet fluid lines and at least two outlet fluid lines. At least one balancing pod within the housing and in fluid connection with the fluid paths. The balancing pod balances the flow of a first fluid and the flow of a second fluid such that the volume of the first fluid equals the volume of the second fluid. The balancing pod also includes a membrane that forms two balancing chambers. Also included in the cassette is at least two reciprocating pressure displacement membrane pumps. The pumps are within the housing and they pump the fluid from a fluid inlet to a fluid outlet line and pump the second fluid from a fluid inlet to a fluid outlet.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: January 6, 2015
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Michael J. Wilt, Kevin L. Grant, James D. Dale, Brian D. Tracey
  • Publication number: 20140364800
    Abstract: Components for a medical infusion fluid handling system, such as an APD system, in which one or more lines (such as solution lines), spikes or other connection ports may be automatically capped and/or de-capped. This feature may provide advantages, such as a reduced likelihood of contamination since no human interaction is required to de-cap and connect the lines, spikes or other connection ports. For example, a fluid handling cassette may include one or more caps that cover a corresponding spike and include a raised and/or recessed feature to assist in removal of the one or more caps from the cassette. A solution line cap may include a hole and recess, groove or other feature to engage with a spike cap and enable removal of the spike cap.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Applicant: DEKA Products Limited Partnership
    Inventors: David W. McGill, Jacob W. Scarpaci, James D. Dale, Simon C. Helmore, Jason A. Demers
  • Patent number: 8888470
    Abstract: A pumping cassette, the cassette includes a housing. The housing includes at least one fluid port and at least one air vent port. The air vent port vents a fluid source outside the housing. The pumping cassette also includes at least one reciprocating pressure displacement membrane pump within the housing. The pump pumps fluid.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: November 18, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Jason A. Demers, Michael J. Wilt, Kevin L. Grant, James D. Dale, Brian Tracey
  • Publication number: 20140319041
    Abstract: Disclosed are hemodialysis and similar dialysis systems including fluid flow circuits. Hemodialysis systems may include a blood flow path, and a dialysate flow path including balancing, mixing, and/or a directing circuits. Preparation of dialysate may be decoupled from patient dialysis. Circuits may be defined within one or more cassettes. The fluid circuit and/or the various fluid flow paths may be isolated from electrical components. A gas supply may be provided that, when activated, is able to urge dialysate through the dialyzer and blood back to the patient. Such a system may be useful during a power failure. The hemodialysis system may also include fluid handling to devices, such as pumps, valves, mixers, etc., actuated using a control fluid. The control fluid may be delivered to the fluid handling devices using a detachable external pump. The fluid handling devices may have a spheroid shape with a diaphragm dividing it into two compartments.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Applicant: DEKA Products Limited Partnership
    Inventors: Michael J. Wilt, Jason A. Demers, Kevin L. Grant, Brian D. Tracey, James D. Dale
  • Patent number: 8870549
    Abstract: Reciprocating positive-displacement membrane pumps (which may be referred to hereinafter as “pods,” “pump pods,” or “pod pumps”) used to pump fluids, such as a biological fluid (e.g., blood or peritoneal fluid), a therapeutic fluid (e.g., a medication solution), or a surfactant fluid are disclosed. The speed of a pump stroke can be adjusted by altering a frequency of pressure pulses delivered to the pump membrane during a fill stroke or a delivery stroke of the pump. A pumping algorithm may divide a pump stroke into an initial pumping period and a end-of-stroke pumping period, with the pressure pulse duration being longer during the initial pumping period. This arrangement may allow for a minimum pump flow rate while also providing a pressure ripple that can be used to detect the end of a pump stroke.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: October 28, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Brian D. Tracey, Larry B. Gray, Jason A. Demers, James D. Dale, N. Christopher Perry, Michael J. Wilt, Scott A. Leonard
  • Patent number: 8863772
    Abstract: The present invention generally relates to occluders and, in particular, to occluders for use in medical infusion systems. In one aspect, the occluder contains one or more tubes through which fluid can flow, and the occluder can be automatically controlled to allow or at least partially prevent fluid flow. In some cases, the occluder may be constructed and arranged to fail (e.g., due to loss of power) in a “closed” position, i.e., a position that at least partially prevents fluid flow. In addition, in one embodiment, the occluder may be manually overridden, even when in a failed state, by a user. For instance, in the event of a power failure, a user may be able to manually override the occluder to remove tubing from the occluder. Such occluders may find use, for example, in medical devices such as hemodialysis machines, medical infusion pumps, plasmapheresis devices, and the like.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 21, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: James D. Dale, Jesse T. Bodwell
  • Publication number: 20140299544
    Abstract: The present invention generally relates to hemodialysis and similar dialysis systems, including a variety of systems and methods that would make hemodialysis more efficient, easier, and/or more affordable. One aspect of the invention is generally directed to new fluid circuits for fluid flow. According to one aspect, a blood pump is configured to pump blood to a dialyzer of a hemodialysis apparatus, the blood pump comprising a pneumatically actuated or controlled reciprocating diaphragm pump. In an embodiment, the diaphragm of the pump comprises a flexible membrane formed or molded to generally conform to a curved inner wall of a pumping chamber or control chamber of the pump, wherein the diaphragm is pre-formed or molded to have a control side taking a convex shape, so that any elastic tension on the diaphragm is minimized when fully extended into a control chamber of the pump.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 9, 2014
    Applicant: DEKA Products Limited Partnership
    Inventors: Michael J. Wilt, Dirk A. van der Merwe, James D. Dale, Brian D. Tracey, Kevin L. Grant, Jason A. Demers, Catharine N. Flynn
  • Patent number: 8840581
    Abstract: Components for a medical infusion fluid handling system, such as an APD system, in which one or more lines (such as solution lines), spikes or other connection ports may be automatically capped and/or de-capped. This feature may provide advantages, such as a reduced likelihood of contamination since no human interaction is required to de-cap and connect the lines, spikes or other connection ports. For example, a fluid handling cassette may include one or more caps that cover a corresponding spike and include a raised and/or recessed feature to assist in removal of the one or more caps from the cassette. A solution line cap may include a hole and recess, groove or other feature to engage with a spike cap and enable removal of the spike cap.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: September 23, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: David W. McGill, Jacob W. Scarpaci, James D. Dale, Simon C. Helmore, Jason A. Demers
  • Publication number: 20140199193
    Abstract: The present invention generally relates to hemodialysis and similar dialysis systems, including a variety of systems and methods that would make hemodialysis more efficient, easier, and/or more affordable. One aspect of the invention is generally directed to new fluid circuits for fluid flow. According to one aspect, a blood pump is configured to pump blood to a dialyzer of a hemodialysis apparatus, the blood pump comprising a pneumatically actuated or controlled reciprocating diaphragm pump. In an embodiment, the diaphragm of the pump comprises a flexible membrane formed or molded to generally conform to a curved inner wall of a pumping chamber or control chamber of the pump, wherein the diaphragm is pre-formed or molded to have a control side taking a convex shape, so that any elastic tension on the diaphragm is minimized when fully extended into a control chamber of the pump.
    Type: Application
    Filed: March 14, 2014
    Publication date: July 17, 2014
    Applicant: DEKA Products Limited Partnership
    Inventors: Michael J. Wilt, James D. Dale, Brian D. Tracey, Kevin L. Grant, Jason A. Demers
  • Patent number: 8771508
    Abstract: A dialyzer mount arranged to support a plurality of differently sized and/or shaped dialyzer units and to accommodate different distances between dialysate connections on the dialyzer units. The dialyzer mount, which may be located on a front panel of the dialysis unit, may include a pair of flange portions that are each arranged to engage with a respective dialysate quick-connect fitting connected to a dialysate port of the dialyzer. Each flange portion may be arranged to engage with a groove on the quick connect fitting that is located between a portion of the base of the quick connect fitting and a slide element of the quick connect fitting. One flange portion may include an adjustable support that is moveable, e.g., in a vertical direction.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 8, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: Kevin L. Grant, Jason A. Demers, James D. Dale, Arun D. Chawan, David E. Collins
  • Patent number: D715136
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: October 14, 2014
    Assignee: DEKA Products Limited Partnership
    Inventors: James D. Dale, Kevin L. Grant