Patents by Inventor James D. Kafka

James D. Kafka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11705688
    Abstract: A laser system having a multi-pass amplifier system which includes at least one seed source configured to output at least one seed signal having a seed signal wavelength, at least one pump source configured to output at least one pump signal, at least one multi-pass amplifier system in communication with the seed source and having at least one gain media, a first mirror, and at least a second mirror therein, the gain media device positioned between the first mirror and second mirror and configured to output at least one amplifier output signal having an output wavelength range, the first mirror and second mirror may be configured to reflect the amplifier output signal within the output wavelength range, and at least one optical system may be in communication with the amplifier system and configured to receive the amplifier output signal and output an output signal within the output wavelength range.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: July 18, 2023
    Assignee: NEWPORT CORPORATION
    Inventors: David E. Spence, Bor-Chyuan Hwang, Curtis Rettig, Thomas Sosnowski, Georg Wien, Victor Terpugoff, James D. Kafka
  • Publication number: 20200373727
    Abstract: A laser system having a multi-pass amplifier system which includes at least one seed source configured to output at least one seed signal having a seed signal wavelength, at least one pump source configured to output at least one pump signal, at least one multi-pass amplifier system in communication with the seed source and having at least one gain media, a first mirror, and at least a second mirror therein, the gain media device positioned between the first mirror and second mirror and configured to output at least one amplifier output signal having an output wavelength range, the first mirror and second mirror may be configured to reflect the amplifier output signal within the output wavelength range, and at least one optical system may be in communication with the amplifier system and configured to receive the amplifier output signal and output an output signal within the output wavelength range.
    Type: Application
    Filed: August 13, 2020
    Publication date: November 26, 2020
    Applicant: NEWPORT CORPORATION
    Inventors: David E. Spence, Bor-Chyuan Hwang, Curtis Rettig, Thomas Sosnowski, Georg Wein, Victor Terpugoff, James D. Kafka
  • Patent number: 10784646
    Abstract: A laser system having a multi-pass amplifier system which includes at least one seed source configured to output at least one seed signal having a seed signal wavelength, at least one pump source configured to output at least one pump signal, at least one multi-pass amplifier system in communication with the seed source and having at least one gain media, a first mirror, and at least a second mirror therein, the gain media device positioned between the first mirror and second mirror and configured to output at least one amplifier output signal having an output wavelength range, the first mirror and second mirror may be configured to reflect the amplifier output signal within the output wavelength range, and at least one optical system may be in communication with the amplifier system and configured to receive the amplifier output signal and output an output signal within the output wavelength range.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 22, 2020
    Assignee: Newport Corporation
    Inventors: David E. Spence, Bor-Chyuan Hwang, Curtis Rettig, Thomas Sosnowski, Georg Wein, Victor Terpugoff, James D. Kafka
  • Publication number: 20200119512
    Abstract: A high-power mode-locked laser system is disclosed herein which includes at least one pump source, at least one laser cavity formed by at least one high reflector and at least one output coupler, and at least one ytterbium-doped optical crystal positioned within the laser cavity in communication with the pump source, the ytterbium-doped optical crystal configured to output at least one output signal of at least 20 W, having a pulse width of 200 fs or less, and a repetition rate of at least 40 MHz.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Applicant: NEWPORT CORPORATION
    Inventors: Joseph SCHAAR, Ching-Yuan CHIEN, Richard BOGGY, James D. KAFKA, Adi DINER
  • Patent number: 10541505
    Abstract: A high-power ytterbium-doped calcium fluoride laser system is disclosed herein which includes at least one pump source, at least one laser cavity formed by at least one high reflector and at least one output coupler, and at least one ytterbium-doped calcium fluoride optical crystal positioned within the laser cavity in communication with the pump source, the ytterbium-doped calcium fluoride optical crystal configured to output at least one output signal of at least 20 W, having a pulse width of 200 fs or less, and a repetition rate of at least 40 MHz.
    Type: Grant
    Filed: December 2, 2017
    Date of Patent: January 21, 2020
    Assignee: Newport corporation
    Inventors: Joseph Schaar, Ching-Yuan Chien, Richard Boggy, James D. Kafka, Adi Diner
  • Patent number: 10297969
    Abstract: The present application discloses various embodiments of a high peak power laser system which includes a diode pump source configured to directly pump at least one optical crystal positioned within the laser cavity, the diode pump source emitting at least one pump beam comprised of two or more vertically stacked optical signals having a wavelength from about 400 nm to about 1100 nm., the optical crystal configured to output at least one optical output having a wavelength of about 750 nm to about 1100 nm and having an output power of about 25 kW or more.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: May 21, 2019
    Assignee: Newport Corporation
    Inventors: Andrei C. Florean, James D. Kafka
  • Publication number: 20190006813
    Abstract: The present application discloses various embodiments of a high peak power laser system which includes a diode pump source configured to directly pump at least one optical crystal positioned within the laser cavity, the diode pump source emitting at least one pump beam comprised of two or more vertically stacked optical signals having a wavelength from about 400 nm to about 1100 nm., the optical crystal configured to output at least one optical output having a wavelength of about 750 nm to about 1100 nm and having an output power of about 25 kW or more.
    Type: Application
    Filed: June 20, 2016
    Publication date: January 3, 2019
    Applicant: Newport Corporation
    Inventors: Andrei C. Florean, James D. Kafka
  • Patent number: 10014652
    Abstract: A novel broadly tunable optical parametric oscillator is described for use in numerous applications including multi-photon microscopy. The optical parametric oscillator includes at least one sub-picosecond laser pump source configured to output a pump signal having a wavelength of about 650 nm or less and at least one type II optical parametric oscillator in optical communication with the pump source and configured to generate a single widely tunable pulsed optical signal. In one application, an optical system is in optical communication with the optical parametric oscillator and configured to direct at least a portion of the optical signal to a specimen, and at least one analyzing device is configured to receive a signal from the specimen in response to the optical signal.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: July 3, 2018
    Assignee: Newport Corporation
    Inventors: James D. Kafka, James Clark, Ching-Yuan Chien, Yujun Deng, Andrei C. Florean, David E. Spence
  • Publication number: 20180159298
    Abstract: A laser system having a multi-pass amplifier system which includes at least one seed source configured to output at least one seed signal having a seed signal wavelength, at least one pump source configured to output at least one pump signal, at least one multi-pass amplifier system in communication with the seed source and having at least one gain media, a first mirror, and at least a second mirror therein, the gain media device positioned between the first mirror and second mirror and configured to output at least one amplifier output signal having an output wavelength range, the first mirror and second mirror may be configured to reflect the amplifier output signal within the output wavelength range, and at least one optical system may be in communication with the amplifier system and configured to receive the amplifier output signal and output an output signal within the output wavelength range.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 7, 2018
    Applicant: Newport Corporation
    Inventors: David E. Spence, Bor-Chyuan Hwang, Curtis Rettig, Thomas Sosnowski, Georg Wein, Victor Terpugoff, James D. Kafka
  • Publication number: 20180159292
    Abstract: A high-power ytterbium-doped calcium fluoride laser system is disclosed herein which includes at least one pump source, at least one laser cavity formed by at least one high reflector and at least one output coupler, and at least one ytterbium-doped calcium fluoride optical crystal positioned within the laser cavity in communication with the pump source, the ytterbium-doped calcium fluoride optical crystal configured to output at least one output signal of at least 20 W, having a pulse width of 200 fs or less, and a repetition rate of at least 40 MHz.
    Type: Application
    Filed: December 2, 2017
    Publication date: June 7, 2018
    Applicant: NEWPORT CORPORATION
    Inventors: Joseph SCHAAR, Ching-Yuan CHIEN, Richard BOGGY, James D. KAFKA, Adi DINER
  • Publication number: 20160211642
    Abstract: A novel broadly tunable optical parametric oscillator is described for use in numerous applications including multi-photon microscopy. The optical parametric oscillator includes at least one sub-picosecond laser pump source configured to output a pump signal having a wavelength of about 650 nm or less and at least one type II optical parametric oscillator in optical communication with the pump source and configured to generate a single widely tunable pulsed optical signal. In one application, an optical system is in optical communication with the optical parametric oscillator and configured to direct at least a portion of the optical signal to a specimen, and at least one analyzing device is configured to receive a signal from the specimen in response to the optical signal.
    Type: Application
    Filed: September 30, 2014
    Publication date: July 21, 2016
    Applicant: Newport Corporation
    Inventors: James D. Kafka, James Clark, Ching-Yuan Chien, Yujun Deng, Andrei C. Florian, David E. Spence
  • Publication number: 20150063830
    Abstract: The present application is directed to a laser system using Stimulated Raman Scattering and harmonic conversion to produce a continuous wave ultraviolet wavelength output signal. More specifically, the laser system includes a pump source configured to generate at least one pump signal, a resonant cavity resonant at a Stokes wavelength in optical communication with the pump source, a SRS gain device positioned within the resonant cavity and configured to generate at least one SRS output signal at a Stokes wavelength when pumped with the pump signal, and a harmonic conversion device positioned within the resonant cavity and configured to produce a continuous wave second harmonic output signal of the SRS output signal.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 5, 2015
    Applicant: Newport Corporation
    Inventors: Alan B. Petersen, James D. Kafka
  • Patent number: 8902939
    Abstract: A novel broadly tunable optical parametric oscillator is described for use in numerous applications including multi-photon microscopy. The optical parametric oscillator includes at least one sub-picosecond laser pump source configured to output a pump signal having a wavelength of about 650 nm or less and at least one type II optical parametric oscillator in optical communication with the pump source and configured to generate a single widely tunable pulsed optical signal. In one application, an optical system is in optical communication with the optical parametric oscillator and configured to direct at least a portion of the optical signal to a specimen, and at least one analyzing device is configured to receive a signal from the specimen in response to the optical signal.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: December 2, 2014
    Assignee: Newport Corporation
    Inventors: James D. Kafka, Ching-Yuan Chien, Yujun Deng, Andrei C. Florean, David E. Spence, Jianping Zhou
  • Publication number: 20110180729
    Abstract: A novel broadly tunable optical parametric oscillator is described for use in numerous applications including multi-photon microscopy. The optical parametric oscillator includes at least one sub-picosecond laser pump source configured to output a pump signal having a wavelength of about 650 nm or less and at least one type II optical parametric oscillator in optical communication with the pump source and configured to generate a single widely tunable pulsed optical signal. In one application, an optical system is in optical communication with the optical parametric oscillator and configured to direct at least a portion of the optical signal to a specimen, and at least one analyzing device is configured to receive a signal from the specimen in response to the optical signal.
    Type: Application
    Filed: January 21, 2011
    Publication date: July 28, 2011
    Applicant: NEWPORT CORPORATION
    Inventors: James D. Kafka, Ching-Yuan Chien, Yujun Deng, Andrei C. Florean, David E. Spence, Jianping Zhou
  • Publication number: 20110103413
    Abstract: The present application discloses various embodiments and methods of producing a quasi-CW UV laser system having the pulse duration and bandwidth to optimize harmonic conversion while producing a UV output configured to satisfy the constraints imposed by the optical system in optical communication therewith. More specifically, in one embodiment the present application discloses a method of optimizing at least one characteristic of the output of a laser system and includes providing a laser system having at least one spectral modification element in optical communication therewith, determining at least one optical characteristic of the output of the laser system for a given application, selecting the bandwidth of the output of the laser system to provide the determined characteristic, and adjusting the spectral modification element to provide the selected bandwidth.
    Type: Application
    Filed: January 18, 2008
    Publication date: May 5, 2011
    Applicant: Newport Corporation
    Inventors: James D. Kafka, David E. Spence
  • Patent number: 7292387
    Abstract: Frequency conversion methods are taught wherein non-collinear phase matching configurations may be implemented in non-linear crystals used in three wave mixing processes such that the frequency conversion efficiency is enhanced through walk-off compensation while also maximizing conversion efficiency. The harmonic conversion techniques are especially applicable to sum frequency process, and in particular to third harmonic generation.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: November 6, 2007
    Assignee: Spectra-Physics, Inc.
    Inventors: Hanna J. Hoffman, David S. Spence, Alan B. Petersen, James D. Kafka
  • Patent number: 7027477
    Abstract: An optical system includes a diode pump source and a thin disk gain media. The thin disk gain media has first and second surfaces and is made of a material with an anisotropic thermal expansion. At least one of the first and second surfaces is a cooling surface. The thin disk gain media is cut at an angle to provide substantially the same thermal expansion coefficient in all directions lying in a plane that is parallel to the cooling surface. An optical coupler is positioned between the diode pump source and the thin disk gain media to direct an output from the diode pump source to the thin disk gain media.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: April 11, 2006
    Assignee: Spectra Physics Inc.
    Inventors: Dirk Sutter, James D. Kafka
  • Patent number: 7016107
    Abstract: A regenerative amplifier system that is optimized for low-gain gain media is provided. The system is configured to include a minimum number of intra-cavity elements while still eliminating the leakage of the seed pulses from the output beam. In addition, the contrast ratio of the amplified pulses is increased even considering the long build-up time that is required in low-gain regenerative amplifiers. This is accomplished using a single Pockels cell between the oscillator and amplifier to select a single seed pulse for the cavity, instead of using a Faraday isolator. This directs the unwanted seed pulses in a separate direction from the output pulse. When the amplified pulse exits the cavity, it is directed in a direction away from the oscillator by the same Pockels cell. Only one additional Pockels cell and one polarizer are required inside the regenerative amplifier cavity.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: March 21, 2006
    Assignee: Spectra Physics, Inc.
    Inventors: James D. Kafka, Jianping Zhou, Kevin Holsinger
  • Patent number: 7003011
    Abstract: An optical system has a high power diode pump source and a thin disk gain media. An optical coupler is positioned between the diode pump source and the thin disk gain media. The optical coupler produces a beam with a large numerical aperture incident on the thin disk gain media.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: February 21, 2006
    Assignee: Spectra Physics, Inc.
    Inventors: James D. Kafka, Dirk Sutter
  • Patent number: 6891876
    Abstract: An optical system has a diode pump source, and a gain media made of a material with an anisotropic absorption. The gain media is cut at an angle to produce substantially polarization-independent absorption of a pump beam. An optical coupler is positioned between the diode pump source and the gain media. The optical coupler produces a pump beam that has substantially equal amounts of pump power along any two orthogonal axis that are orthogonal to the pump beam in the gain medium. The wavelength range allowed for the pump source is extended.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: May 10, 2005
    Assignee: Spectra Physics, Inc.
    Inventors: Dirk Sutter, James D. Kafka