Patents by Inventor James D Lykowski

James D Lykowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120074829
    Abstract: An electrode for a spark ignition device, including a spark plug, which includes an alloy consisting essentially of, in weight percent, at least 15% Ni and the balance substantially Pt, and more particularly 15-45% Ni and the balance substantially Pt; 5-35% W, and the balance substantially Pd; and 5-15% Ni, 5-15% Pt, less than 10% Ir, and the balance substantially Pd.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 29, 2012
    Inventor: James D. Lykowski
  • Publication number: 20120063054
    Abstract: A corona ignition system 20 includes a corona drive circuit 26 and an auxiliary energy circuit 28. The energy circuit 28 stores energy during a standard corona ignition cycle. When arc discharge occurs or corona discharge switches to an arc discharge, the energy circuit 28 discharges the stored energy to the electrode 30 to intentionally maintain a robust arc discharge 29 and thus provide reliable ignition. The stored energy is transmitted to the electrode 30 over a predetermined period of time. The arc discharge is detected and an arc control signal 60 is transmitted to the energy circuit 28, triggering discharge of the stored energy to the electrode 30. The stored energy can be transmitted to the electrode 30 along a variety of different paths. The voltage of the stored energy is typically increased by an energy transformer 70 before being transmitted to the electrode 30.
    Type: Application
    Filed: August 31, 2011
    Publication date: March 15, 2012
    Inventors: JOHN ANTONY BURROWS, James D. Lykowski
  • Publication number: 20120038262
    Abstract: A spark plug, center electrode and method of construction is provided. The spark plug has a generally annular ceramic insulator and a conductive shell surrounding at least a portion of the ceramic insulator. A ground electrode is operatively attached to the shell, with the ground electrode having a ground electrode sparking surface. A center electrode has an elongate body with a center electrode sparking surface. The center electrode sparking surface and the ground electrode sparking surface provide a spark gap. The center electrode body is constructed of a composite material including at least one ceramic material.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 16, 2012
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventors: William J. Walker, JR., James D. Lykowski
  • Publication number: 20120013240
    Abstract: A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 19, 2012
    Inventors: William J. Walker, JR., James D. Lykowski
  • Patent number: 8044565
    Abstract: A spark plug, center electrode and method of construction is provided. The spark plug has a generally annular ceramic insulator and a conductive shell surrounding at least a portion of the ceramic insulator. A ground electrode is operatively attached to the shell, with the ground electrode having a ground electrode sparking surface. A center electrode has an elongate body with a center electrode sparking surface. The center electrode sparking surface and the ground electrode sparking surface provide a spark gap. The center electrode body is constructed of a composite material including at least one ceramic material.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: October 25, 2011
    Assignee: Federal-Mogul Ingnition Company
    Inventors: William J. Walker, Jr., James D. Lykowski
  • Patent number: 8044561
    Abstract: A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: October 25, 2011
    Assignee: Federal-Mogul Ignition Company
    Inventors: William J. Walker, Jr., James D. Lykowski
  • Publication number: 20110247579
    Abstract: An igniter (20) emitting an electrical field including a plurality of streamers forming a corona includes a corona enhancing tip (52) at an electrode firing end (28). The corona enhancing tip (52) includes an emitting member (58) such as a wire, layer, or sintered mass, formed of a precious metal and disposed on a base member (54). The base member (54) is formed of a nickel alloy. The emitting member (58) has a lower electrical erosion rate and chemical corrosion rate than the base member (54). The emitting member (58) presents the smallest spherical radius of the corona enhancing tip (52) at the outermost radial point (56) to concentrate the electrical field emissions and provide a consistently strong electrical field strength over time.
    Type: Application
    Filed: April 13, 2011
    Publication date: October 13, 2011
    Inventors: Keith Hampton, William J. Walker, JR., James D. Lykowski
  • Publication number: 20110127900
    Abstract: A spark plug electrode material that may be used in spark plugs and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. According to an exemplary embodiment, the electrode material includes a refractory metal (for example, tungsten (W), molybdenum (Mo), rhenium (Re), ruthenium (Ru) and/or chromium (Cr)) and a precious metal (for example, rhodium (Rh), platinum (Pt), palladium (Pd) and/or iridium (Ir)), where the refractory metal is present in an amount that is greater than that of the precious metal. This includes, but is certainly not limited to, electrode materials including tungsten-based alloys such as W—Rh and ruthenium-based alloys such as Ru—Rh. Other combinations and embodiments are also possible.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 2, 2011
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventors: Shuwei Ma, James D. Lykowski
  • Patent number: 7948159
    Abstract: A spark plug having a multilayer firing tip that minimizes the amount of precious metal used and a method of assembling a spark plug with a multilayer firing tip. The firing tip includes a discharge end and a weld end, with the weld end being connected to a center electrode, and more specifically to a base electrode on the center electrode. The weld end has a coefficient of thermal expansion, which is not between the values for the coefficients of thermal expansion for the discharge end and the base electrode. More specifically, the weld end has a coefficient of thermal expansion which is greater than the coefficients of thermal expansion for the discharge end and base electrode. The weld end is formed from Nickel and Chromium with a limited amount of additional elements. The spark plug is assembled by providing a first elongated material formed from the material used for the discharge end and a second elongated material formed from a material used for the weld end.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 24, 2011
    Assignee: Federal Mogul World Wide, Inc.
    Inventor: James D. Lykowski
  • Publication number: 20110037370
    Abstract: A spark plug (20) includes a center electrode (24) and a ground electrode (22). The electrodes (22, 24) include a core (26) formed of a copper (Cu) alloy and a clad (28) formed of a nickel (Ni) alloy enrobing the core (26). The Cu alloy includes Cu in an amount of at least 98.5 weight percent, and at least one of Zr and Cr in an amount of at least 0.05 weight percent. The Cu alloy includes a matrix of the Cu and precipitates of the Zr and Cu dispersed in the Cu matrix. The Ni alloy of the clad (28) includes Ni in an amount of at least 90.0 weight percent. The Ni alloy also includes at least one of a Group 3 element, a Group 4 element, a Group 13 element, chromium (Cr), silicon (Si), and manganese (Mn) in a total amount sufficient to affect the strength of the Ni alloy.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 17, 2011
    Inventors: SHUWEI MA, James D. Lykowski
  • Publication number: 20110012498
    Abstract: A spark plug (20) includes at least one electrode(22, 24) having a sparking end (28, 32). The sparking end (28, 32) is formed of a high temperature performance alloy including chromium in an amount of 10.0 weight percent to 60.0 weight percent, palladium in an amount of 0.5 weight percent to 10.0 weight percent, and a balance substantially of at least one of molybdenum and tungsten. The sparking end (28, 32) presents a spark contact surface (36, 44), and at a temperature of at least 500° C., such as during use of the spark plug (20) in an internal combustion engine, a layer (50) of chromium oxide (Cr2O3) forms at said spark contact surface (36, 44). The layer (50) of Cr2O3 protects the bulk of the sparking end 32, 38 from the extreme conditions of the combustion chamber and prevents erosion, corrosion, and balling.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Inventors: Shuwei Ma, James D. Lykowski
  • Patent number: 7866294
    Abstract: An electrode for an ignition device formed from a dilute nickel alloy with improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture. The electrode includes at least 90% by weight of nickel; zirconium; boron and at least one element from the group consisting of aluminum, magnesium, silicon, chromium, titanium and manganese. The weight ratio of Zr/B may range from about 0.5 to 150, and may include amounts of, by weight of the alloy, 0.05-0.5% zirconium and 0.001-0.01% boron. The oxidation resistance may be improved by the addition of hafnium in an amount that is comparable to the amount of zirconium, which may include an amount of, by weight of the alloy, 0.005-0.2% hafnium. Electrodes of dilute nickel alloys which include aluminum and silicon, as well as those which include chromium, silicon, manganese and titanium, are particularly useful as spark plug electrodes.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: January 11, 2011
    Assignee: Federal-Mogul Worldwide, Inc.
    Inventors: James D. Lykowski, Iryna Levina
  • Patent number: 7823556
    Abstract: An electrode for an ignition device is made from a Ni-based nickel-chromium-iron alloy which has improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture includes, by weight of the alloy: 14.5-25% chromium; 7-22% iron; 0.2-0.5% manganese; 0.2-0.5% silicon; 0.1-2.5% aluminum; 0.05-0.15% titanium; 0.01-0.1% total of calcium and magnesium; 0.005-0.5% zirconium; 0.001-0.01% boron, and the balance substantially Ni. It may also include at least one rare earth element selected from the group consisting of: yttrium, hafnium, lanthanum, cerium and neodymium in amounts ranging from 0.01-0.15% by weight, and incidental impurities, including cobalt, niobium, molybdenum, copper, carbon, lead, phosphorus or sulfur. These total of these impurities will typically be controlled to limits of 0.1% cobalt, 0.05% niobium, 0.05% molybdenum, 0.01% copper, 0.01% carbon, 0.005% lead, 0.005% phosphorus and 0.005% sulfur.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: November 2, 2010
    Assignee: Federal-Mogul World Wide, Inc.
    Inventors: James D. Lykowski, Iryna Levina
  • Publication number: 20100201245
    Abstract: A spark plug and method of construction thereof is provided. The spark plug includes a metal shell having a through cavity, a lower insulator and a plastic upper insulator. The lower insulator is received in the through cavity and has a through passage with a center electrode received therein. A ground electrode is operatively attached to the shell in spaced relation from the ground electrode to provide a spark gap. The plastic upper insulator has a distal end received in the through cavity of the shell and a terminal end extending axially outwardly from the shell. The upper insulator has a through passage extending between the terminal end and the distal end. An elongate conductive member is received in the through passage of the upper insulator and is configured for electrical communication with the center electrode.
    Type: Application
    Filed: October 19, 2009
    Publication date: August 12, 2010
    Inventors: Kevin L. Miller, Richard L. Keller, William J. Walker, JR., James D. Lykowski, Shuwei Ma, Matthew C. Ware, John W. Hoffman, Mark S. McMurray, Brian A. Bolduc, David Walker, Myron J. Schmenk, James L. May, Kevin J. Kowalski
  • Publication number: 20100175654
    Abstract: An electrode for an ignition device is made from a dilute nickel alloy which has improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture and includes at least 90% by weight of nickel; zirconium; boron and at least one element from the group consisting of aluminum, magnesium, silicon, chromium, titanium and manganese. The weight ratio of Zr/B may range from about 0.5 to 150, and may include amounts of, by weight of the alloy, 0.05-0.5% zirconium and 0.001-0.01% boron. The oxidation resistance of the alloy may also be improved by the addition of hafnium to the alloy in an amount that is comparable to the amount of zirconium, which may include an amount of, by weight of the alloy, 0.005-0.2% hafnium. Electrodes of dilute nickel alloys which include aluminum and silicon, as well as those which include chromium, silicon, manganese and titanium, are particularly useful as spark plug electrodes.
    Type: Application
    Filed: March 17, 2010
    Publication date: July 15, 2010
    Inventors: James D. Lykowski, Iryna Levina
  • Publication number: 20100175653
    Abstract: An ignitor assembly constructed in accordance with one aspect of the invention has an upper inductor subassembly coupled to a lower firing end subassembly for relative pivot movement between the subassemblies. The upper inductor subassembly includes a tubular housing with inductor windings received therein with an upper electrical connector adjacent an upper end of the housing and a lower electrical connector adjacent a lower end of the housing. The lower firing end subassembly includes a ceramic insulator and a metal housing surrounding at least a portion of the ceramic insulator. The ceramic insulator has an electrical terminal extending from a terminal end and an electrode extending from a firing end. A flexible tube couples the upper inductor subassembly to the lower firing end subassembly and maintains the electrical terminal of the lower firing end subassembly in electrical contact with the lower electrical connector of the upper at a pivot joint.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 15, 2010
    Inventors: James D. Lykowski, Keith Hampton
  • Publication number: 20100175655
    Abstract: This invention provides a corona discharge fuel igniter system and methods for igniting fuel in an internal combustion engine. A ceramic dielectric material is provided that significantly increases the efficiency of corona discharge to ignite the fuel in an internal combustion engine.
    Type: Application
    Filed: January 12, 2010
    Publication date: July 15, 2010
    Applicant: FEDERAL-MOGUL IGNITION COMPANY
    Inventors: James D. Lykowski, William J. Walker, John W. Hoffman
  • Patent number: 7707985
    Abstract: An electrode for an ignition device formed from a dilute nickel alloy with improved resistance to high temperature oxidation, sulfidation, corrosive wear, deformation and fracture. The electrode includes at least 90% by weight of nickel; zirconium; boron and at least one element from the group consisting of aluminum, magnesium, silicon, chromium, titanium and manganese. The weight ratio of Zr/B may range from about 0.5 to 150, and may include amounts of, by weight of the alloy, 0.05-0.5% zirconium and 0.001-0.01% boron. The oxidation resistance may be improved by the addition of hafnium in an amount that is comparable to the amount of zirconium, which may include an amount of, by weight of the alloy, 0.005-0.2% hafnium. Electrodes of dilute nickel alloys which include aluminum and silicon, as well as those which include chromium, silicon, manganese and titanium, are particularly useful as spark plug electrodes.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: May 4, 2010
    Assignee: Federal-Mogul World Wide, Inc.
    Inventors: James D. Lykowski, Iryna Levina
  • Publication number: 20100052497
    Abstract: A spark plug, a center electrode therefore and method of construction is provided. The spark plug has a generally annular ceramic insulator extending between a terminal end and a nose end. A conductive shell surrounds at least a portion of the ceramic insulator and a ground electrode having a ground electrode sparking surface is operatively attached to the shell. An elongate center electrode has a body extending between opposite ends, wherein the body is compacted and sintered of a conductive or semi-conductive ceramic material. One of the electrode ends provides a center electrode sparking surface to provide a spark gap between the center electrode sparking surface and the ground electrode sparking surface.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 4, 2010
    Inventors: William J. Walker, JR., James D. Lykowski
  • Publication number: 20100052499
    Abstract: A spark plug, center electrode and method of construction is provided. The spark plug has a generally annular ceramic insulator and a conductive shell surrounding at least a portion of the ceramic insulator. A ground electrode is operatively attached to the shell, with the ground electrode having a ground electrode sparking surface. A center electrode has an elongate body with a center electrode sparking surface. The center electrode sparking surface and the ground electrode sparking surface provide a spark gap. The center electrode body is constructed of a composite material including at least one ceramic material.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Inventors: William J. Walker, JR., James D. Lykowski