Patents by Inventor James D. Otvos

James D. Otvos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210080452
    Abstract: Biomarkers and/or risk assessments identify patients having an increased risk of certain clinical disease states including, for example, CHD, type 2 diabetes, dementia, or all-cause death (ACD) using NMR signal to measure a level of “GlycA” in arbitrary units or in defined units (e.g., ?mol/L) that can be determined using a defined single peak region of proton NMR spectra. The GlycA measurement can be used as an inflammation biomarker for clinical disease states. The NMR signal for GlycA can include a fitting region of signal between about 2.080 ppm and 1.845 ppm of the proton NMR spectra.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 18, 2021
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova, Dennis W. Bennett, Justyna E. Wolak-Dinsmore
  • Patent number: 10852293
    Abstract: Biomarkers and/or risk assessments identify patients having an increased risk of certain clinical disease states including, for example, CHD, type 2 diabetes, dementia, or all-cause death (ACD) using NMR signal to measure a level of “GlycA” in arbitrary units or in defined units (e.g., ?mol/L) that can be determined using a defined single peak region of proton NMR spectra. The GlycA measurement can be used as an inflammation biomarker for clinical disease states. The NMR signal for GlycA can include a fitting region of signal between about 2.080 ppm and 1.845 ppm of the proton NMR spectra.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: December 1, 2020
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova, Dennis W. Bennett, Justyna E. Wolak-Dinsmore
  • Publication number: 20200355634
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Application
    Filed: March 9, 2020
    Publication date: November 12, 2020
    Applicant: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Patent number: 10613044
    Abstract: A defined peak region residing between about 3.2 and 3.4 ppm of a proton NMR spectrum of an in vitro biosample is electronically evaluated to determine a level of trimethylamine-N-oxide (“TMAO”). The biosamples may be any suitable biosamples including human serum with a normal biologic range of between about 1-50 ?M or urine with a normal biologic range of between about 0-1000 ?M.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: April 7, 2020
    Assignee: Liposcience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Dennis W. Bennett, Steven P. Matyus, Stanley L. Hazen
  • Publication number: 20200066370
    Abstract: Methods, computer program products and apparatus determine a subject's risk of having or developing CHD using a calculated HDL particle risk number and/or a mathematical model of risk associated with HDL particles that adjusts concentrations of at least one of the subclasses of small, medium and large HDL particle measurements to reflect predicted CHD risk. A calculated LDL particle risk number may also be generated as well as a lipoprotein particle index derived from the ratio of RLDL/RHDL.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Applicant: Liposcience, Inc.
    Inventor: James D. Otvos
  • Publication number: 20200003752
    Abstract: Embodiments of the invention are directed to methods, systems and computer programs that provide improved risk stratification for people having elevated large HDL-P using at least one defined HDL risk interaction parameter.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 2, 2020
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Publication number: 20200005943
    Abstract: Methods, systems and circuits evaluate a subject's risk of developing type 2 diabetes or developing or having prediabetes using at least one defined mathematical model of risk of progression that can stratify risk for patients having the same glucose measurement. The model may include NMR derived measurements of GlycA and a plurality of selected lipoprotein components of at least one biosample of the subject.
    Type: Application
    Filed: July 2, 2019
    Publication date: January 2, 2020
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova, Dennis W. Bennett, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Kelly Mercier
  • Patent number: 10504610
    Abstract: Methods, computer program products and apparatus determine a subject's risk of having or developing CHD using a calculated HDL particle risk number and/or a mathematical model of risk associated with HDL particles that adjusts concentrations of at least one of the subclasses of small, medium and large HDL particle measurements to reflect predicted CHD risk. A calculated LDL particle risk number may also be generated as well as a lipoprotein particle index derived from the ratio of RLDL/RHDL.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 10, 2019
    Assignee: LipoScience, Inc.
    Inventor: James D. Otvos
  • Publication number: 20190317165
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 17, 2019
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Patent number: 10386355
    Abstract: Embodiments of the invention are directed to methods, systems and computer programs that provide improved risk stratification for people having elevated large HDL-P using at least one defined HDL risk interaction parameter.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: August 20, 2019
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Patent number: 10388414
    Abstract: Methods, systems and circuits evaluate a subject's risk of developing type 2 diabetes or developing or having prediabetes using at least one defined mathematical model of risk of progression that can stratify risk for patients having the same glucose measurement. The model may include NMR derived measurements of GlycA and a plurality of selected lipoprotein components of at least one biosample of the subject.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: August 20, 2019
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova, Dennis W. Bennett, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Kelly Mercier
  • Patent number: 10365339
    Abstract: The clinical analyzers automatically electronically monitor selected parameters and automatically electronically adjust parameters to maintain the analyzer within desired operational ranges. The clinical NMR analyzers can be configured as a networked system with a plurality of clinical NMR analyzers located at different use sites.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: July 30, 2019
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Elias J. Jeyarajah, Stephen Markham, Steven P. Matyus, David R. Morgan, Bruce D. Silberman, Donald R. Deuel
  • Publication number: 20190145990
    Abstract: Described herein are methods and systems for the determination of constituents in biosamples by NMR spectroscopy and more specifically for the determination of lipoprotein constituents LP-X, LP-Y, and LP-Z in blood plasma and serum.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 16, 2019
    Inventors: James D. Otvos, Irina Shalaurova, Alan Remaley, Maureen Sampson, Lita Freeman
  • Publication number: 20190072572
    Abstract: Disclosed are methods and systems to determine a subject's metabolic vulnerability index (MVX) score using at least one defined mathematical model of risk. The methods comprise evaluating various biomarkers to distinguish various health risks. In one embodiment, the method comprises evaluating biomarkers to determine a relative risk of premature all-cause mortality. The model may include NMR-derived measurements of GlycA, S-HDLP, branched chain amino acids (BCAAs), ketone bodies, total serum protein, and citrate in at least one biosample of the subject.
    Type: Application
    Filed: September 7, 2018
    Publication date: March 7, 2019
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Publication number: 20180196075
    Abstract: Methods, systems and circuits evaluate a subject's CVD risk using a risk parameter that includes at least one HDL and inflammatory biomarker interaction parameter. The inflammatory biomarker may optionally comprise NMR derived measurements of GlycA from at least one biosample of the subject. The risk parameter may be gender-specific.
    Type: Application
    Filed: March 8, 2018
    Publication date: July 12, 2018
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Publication number: 20180158554
    Abstract: Methods, systems and circuits evaluate a subject's risk of developing type 2 diabetes using defined mathematical models of short term risk (STR) and longer term risk of progression. The evaluations can stratify risk for patients having the same glucose measurement, particularly those with intermediate or low (normal) fasting plasma glucose (FPG) values. The STR or IR (insulin resistance) model(s) may include an inflammatory biomarker such as an NMR derived measurements of GlycA and a plurality of selected lipoprotein components of at least one biosample of the subject. Embodiments of the invention also provide methods, systems and circuits that generate STR scores as a marker of beta-cell dysfunction or impairment.
    Type: Application
    Filed: January 25, 2018
    Publication date: June 7, 2018
    Applicant: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Publication number: 20180112274
    Abstract: Disclosed are methods and systems that uses GlycA concentration in biosamples to evaluate risks of CRC incidence and mortality.
    Type: Application
    Filed: June 2, 2017
    Publication date: April 26, 2018
    Inventors: James D. Otvos, Samia Mora, Paulette Denise Chandler
  • Patent number: 9952232
    Abstract: Methods, systems and circuits evaluate a subject's CVD risk using a risk parameter that includes at least one HDL and inflammatory biomarker interaction parameter. The inflammatory biomarker may optionally comprise NMR derived measurements of GlycA from at least one biosample of the subject. The risk parameter may be gender-specific.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: April 24, 2018
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Patent number: 9928345
    Abstract: Methods, systems and circuits evaluate a subject's risk of developing type 2 diabetes using defined mathematical models of short term risk (STR) and longer term risk of progression. The evaluations can stratify risk for patients having the same glucose measurement, particularly those with intermediate or low (normal) fasting plasma glucose (FPG) values. The STR or IR (insulin resistance) model(s) may include an inflammatory biomarker such as an NMR derived measurements of GlycA and a plurality of selected lipoprotein components of at least one biosample of the subject. Embodiments of the invention also provide methods, systems and circuits that generate STR scores as a marker of beta-cell dysfunction or impairment.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: March 27, 2018
    Assignee: LipoSciences, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova
  • Patent number: 9792410
    Abstract: Methods, systems and circuits evaluate a subject's risk of developing type 2 diabetes or having prediabetes using at least one defined mathematical model of risk of progression that can stratify risk for patients having the same glucose measurement. The model may include NMR derived measurements of GlycA and a plurality of selected lipoprotein components of at least one biosample of the subject.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: October 17, 2017
    Assignee: LipoScience, Inc.
    Inventors: James D. Otvos, Irina Y. Shalaurova, Dennis W. Bennett, Justyna E. Wolak-Dinsmore, Thomas M. O'Connell, Kelly Mercier