Patents by Inventor James D. Reinke

James D. Reinke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11045654
    Abstract: A device, such as an IMD, having a tissue conductance communication (TCC) transmitter controls a drive signal circuit and a polarity switching circuit by a controller of the TCC transmitter to generate an alternating current (AC) ramp on signal having a peak amplitude that is stepped up from a starting peak-to-peak amplitude to an ending peak-to-peak amplitude according to a step increment and step up interval. The TCC transmitter is further controlled to transmit the AC ramp on signal from the drive signal circuit and the polarity switching circuit via a coupling capacitor coupled to a transmitting electrode vector coupleable to the IMD. After the AC ramp on signal, the TCC transmitter transmits at least one TCC signal to a receiving device.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 29, 2021
    Assignee: Medtronic, Inc.
    Inventors: David J. Peichel, Jonathan P. Roberts, James D. Reinke, Michael B. Terry
  • Patent number: 11033743
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: June 15, 2021
    Assignee: MEDTRONIC, INC. (CVG)
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Patent number: 11020038
    Abstract: In situations in which an implantable medical device (e.g., a subcutaneous ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the subcutaneous ICD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the ICD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the ICD includes a first pace pulse detector configured to obtain a sensed electrical signal and analyze the sensed electrical signal to detect a first type of pulses having a first set of characteristics and a second pace pulse detector configured to obtain the sensed electrical signal and analyze the sensed electrical signal to detect a second type of pulses having a second set of characteristics.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 1, 2021
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Xusheng Zhang, Vinod Sharma, Vladimir P. Nikolski, Michael B. Terry, Scott A. Hareland, Daniel L. Hansen, Donna M. Salmi
  • Patent number: 10981010
    Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: April 20, 2021
    Assignee: Medtronic, Inc.
    Inventors: Hyun J. Yoon, Wade M. Demmer, Matthew J. Hoffman, Robert A. Betzold, Jonathan D. Edmonson, Michael L. Ellingson, Ben W. Herberg, Juliana E. Pronovici, James D. Reinke, Todd J. Sheldon, Paul R. Solheim
  • Publication number: 20200398064
    Abstract: Systems, devices, and techniques for establishing communication between two medical devices are described. In one example, an implantable medical device comprises communication circuitry, therapy delivery circuitry, and processing circuitry configured to initiate a communication window during which the implantable second medical device is capable of receiving the information related to a cardiac event detected by a first medical device, the communication window being one of a plurality of communication windows defined by a communication schedule that corresponds to a transmission schedule in which the first medical device is configured to transmit the information, control the communication circuitry to receive, from the first medical device, the information related to the cardiac event that is indicative of a timing of the cardiac event with respect to a timing of the communication window, schedule and control delivery of a therapy according to the information related to the cardiac event.
    Type: Application
    Filed: September 4, 2020
    Publication date: December 24, 2020
    Inventors: James K. Carney, Saul E. Greenhut, Jonathan L. Kuhn, James D. Reinke, David J. Peichel, James W. Busacker
  • Publication number: 20200383596
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Robert W. STADLER, Xusheng ZHANG, Vinod SHARMA, James D. REINKE, Barbara J. SCHMID
  • Patent number: 10828494
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: November 10, 2020
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Patent number: 10780261
    Abstract: In an example, an implantable medical device (IMD) includes a hold capacitor configured to deliver an electrical therapy pulse, and charge pump circuitry configured to transfer energy from the battery to the hold capacitor. In this example, the charge pump circuitry comprises a plurality of capacitors, and switching circuitry configured to put the charge pump circuitry into a K-factor mode selected from a group of K-factor modes by opening and closing a combination of switches connected to the plurality of capacitors.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: September 22, 2020
    Inventors: Anthony W. Schrock, James W. Busacker, Kevin E. Baumgart, Michael L. Hudziak, James D. Reinke, John D. Wahlstrand
  • Patent number: 10773088
    Abstract: Systems, devices, and techniques for establishing communication between two medical devices are described. In one example, an implantable medical device comprises communication circuitry, therapy delivery circuitry, and processing circuitry configured to initiate a communication window during which the implantable second medical device is capable of receiving the information related to a cardiac event detected by a first medical device, the communication window being one of a plurality of communication windows defined by a communication schedule that corresponds to a transmission schedule in which the first medical device is configured to transmit the information, control the communication circuitry to receive, from the first medical device, the information related to the cardiac event that is indicative of a timing of the cardiac event with respect to a timing of the communication window, schedule and control delivery of a therapy according to the information related to the cardiac event.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: September 15, 2020
    Assignee: Medtronic, Inc.
    Inventors: James K. Carney, Saul E. Greenhut, Jonathan L. Kuhn, James D. Reinke, David J. Peichel, James W. Busacker
  • Patent number: 10750970
    Abstract: An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 25, 2020
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Xusheng Zhang, Vinod Sharma, James D. Reinke, Barbara J. Schmid
  • Patent number: 10722717
    Abstract: In some examples, an implantable medical device determines that another medical device delivered an anti-tachyarrhythmia shock, and delivers post-shock pacing in response to the determination. The implantable medical device may be configured to both detect the delivery of the shock in a sensed electrical signal and, if delivery of the shock is not detected, determine that the shock was delivered based on detection of asystole of the heart. The asystole may be detected based on the sensed electrical signal. In some examples, an implantable medical device is configured to revert from a post-shock pacing mode to a baseline pacing mode by iteratively testing a plurality of decreasing values of pacing pulse magnitude until loss of capture is detected. The implantable medical device may update a baseline value of the pacing pulse magnitude for the baseline mode based on the detection of loss of capture.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 28, 2020
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James D. Reinke, Jon D. Schell
  • Publication number: 20200129773
    Abstract: Techniques for facilitating communication between an implantable medical device and an external device are provided. In one example, a method comprises broadcasting, via communication circuitry of an implantable device, a first set of advertisements at a first advertising rate according to a communication protocol. The method further comprises determining that detection circuitry of the implantable device detected voltage induced by an electromagnetic field at an interface between tissue of a patient and electrodes of the implantable device and in response to the detection of voltage induced by the electromagnetic field, broadcasting, via the communication circuitry, a second set of advertisements at a second advertising rate according to the communication protocol. The second advertising rate is greater than the first advertising rate.
    Type: Application
    Filed: October 31, 2019
    Publication date: April 30, 2020
    Inventors: Val D. Eisele, Robert M. Ecker, David J. Peichel, William J. Plombon, James D. Reinke
  • Patent number: 10610694
    Abstract: In some examples, the disclosure describes an implantable medical device comprising a plurality of electrodes, sensing circuitry configured to sense a physiological electrical signal via the plurality of electrodes, and communication circuitry configured to transmit and/or receive a transconductance communication signal via the plurality of electrodes, wherein at least one electrode of the plurality of electrodes comprises a lower-capacitance portion and a higher-capacitance portion.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: April 7, 2020
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, James K. Carney, Can Cinbis, Richard J. O'Brien, Bushan Purushothaman
  • Patent number: 10561850
    Abstract: An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, James K. Carney, Can Cinbis, David J. Peichel, Joseph Ballis
  • Publication number: 20200038664
    Abstract: The control module of a first pacemaker included in an implantable medical device system including the first pacemaker and a second pacemaker is configured to set a pacing escape interval in response to a far field pacing pulse sensed by the first pacemaker. The far field pacing pulse is a pacing pulse delivered by the second pacemaker. The pacing escape interval is allowed to continue without restarting the in response to a far field intrinsic event sensed by the first pacemaker during the pacing escape interval. The first pacemaker delivers a cardiac pacing pulse to the heart upon expiration of the pacing escape interval.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Inventors: Wade M. DEMMER, Todd J. SHELDON, Saul E. GREENHUT, James D. REINKE
  • Publication number: 20200038665
    Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
    Type: Application
    Filed: October 14, 2019
    Publication date: February 6, 2020
    Inventors: Hyun J. YOON, Wade M. DEMMER, Matthew J. HOFFMAN, Robert A. BETZOLD, Jonathan D. EDMONSON, Michael L. ELLINGSON, Mark K. ERICKSON, Ben W. HERBERG, Juliana E. PRONOVICI, James D. REINKE, Todd J. SHELDON, Paul R. SOLHEIM
  • Patent number: 10448855
    Abstract: In situations in which an implantable medical device (IMD) (e.g., an extravascular ICD) is co-implanted with a leadless pacing device (LPD), it may be important that the IMD knows when the LPD is delivering pacing, such as anti-tachycardia pacing (ATP). Techniques are described herein for detecting, with the IMD and based on the sensed electrical signal, pacing pulses and adjusting operation to account for the detected pulses, e.g., blanking the sensed electrical signal or modifying a tachyarrhythmia detection algorithm. In one example, the IMD includes a pace pulse detector that detects, based on the processing of sensed electrical signals, delivery of a pacing pulse from a second implantable medical device and blank, based on the detection of the pacing pulse, the sensed electrical signal to remove the pacing pulse from the sensed electrical signal.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: October 22, 2019
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, Xusheng Zhang, Vinod Sharma, Vladimir P. Nikolski, Michael B. Terry, Scott A. Hareland, Daniel L. Hansen, Donna M. Salmi
  • Patent number: 10441796
    Abstract: The control module of a first pacemaker included in an implantable medical device system including the first pacemaker and a second pacemaker is configured to set a pacing escape interval in response to a far field pacing pulse sensed by the first pacemaker. The far field pacing pulse is a pacing pulse delivered by the second pacemaker. The pacing escape interval is allowed to continue without restarting the in response to a far field intrinsic event sensed by the first pacemaker during the pacing escape interval. The first pacemaker delivers a cardiac pacing pulse to the heart upon expiration of the pacing escape interval.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 15, 2019
    Assignee: Medtronic, Inc.
    Inventors: Wade M Demmer, Todd J Sheldon, Saul E Greenhut, James D Reinke
  • Patent number: 10441798
    Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: October 15, 2019
    Assignee: Medtronic, Inc.
    Inventors: Hyun J. Yoon, Wade M. Demmer, Matthew J. Hoffman, Robert A. Betzold, Jonathan D. Edmonson, Michael L. Ellingson, Mark K. Erickson, Ben E. Herberg, Juliana E. Pronovici, James D. Reinke, Todd J. Sheldon, Paul R. Solheim
  • Publication number: 20190262620
    Abstract: Implantable medical systems enter an exposure mode of operation, either manually via a down linked programming instruction or by automatic detection by the implantable system of exposure to a magnetic disturbance. A controller then determines the appropriate exposure mode by considering various pieces of information including the device type including whether the device has defibrillation capability, pre-exposure mode of therapy including which chambers have been paced, and pre-exposure cardiac activity that is either intrinsic or paced rates. Additional considerations may include determining whether a sensed rate during the exposure mode is physiologic or artificially produced by the magnetic disturbance. When the sensed rate is physiologic, then the controller uses the sensed rate to trigger pacing and otherwise uses asynchronous pacing at a fixed rate.
    Type: Application
    Filed: May 13, 2019
    Publication date: August 29, 2019
    Inventors: Hyun J. YOON, Wade M. DEMMER, Matthew J. HOFFMAN, Robert A. BETZOLD, Jonathan D. EDMONSON, Michael L. ELLINGSON, Ben W. HERBERG, Juliana E. PRONOVICI, James D. REINKE, Todd J. SHELDON, Paul R. SOLHEIM