Patents by Inventor James D. Weiland

James D. Weiland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10251780
    Abstract: A three-coil electromagnetic induction power transfer system is disclosed for epiretinal prostheses and other implants. A third, buffer coil is disposed between an external transmitting coil and a receiver coil buried within the body to improve efficiency and robustness to misalignments. One or more of the coils can be manufactured using micromechanical machining techniques to lay out conductors in a ribbon of biocompatible insulator, folding lengths of the insulated conductor traces longitudinally over one another, and then spiraling them into a ring. The traces change axial position in the ring by shifting across fold lines. One or more U-shaped sections on the traces can be folded so that adjacent traces can project opposite one another, lengthening the resulting ribbon that can be wound into a coil.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: April 9, 2019
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Yu-Chong Tai, Yu Zhao, Mark S. Humayun, James D. Weiland
  • Patent number: 10111597
    Abstract: Aspects of the present disclosure are directed to electrochemical approaches for synthesis of platinum-iridium alloys with selected platinum-iridium ratio content and subsequently predetermined mechanical properties and electrochemical impedance properties. Such can provide a simple and cost-effective process for preparing these electrodes, as compared to conventional thin film processing techniques. A three-electrode electrochemical electrodeposition system is described including an electrochemical cell with a working electrode on which the electrodeposited film is deposited, a counter electrode to complete the electrochemical circuit and a reference electrode to measure and control surface potential. Mixed layers of platinum atoms and iridium atoms can be deposited from electrolyte solution onto the working electrode surface to create an electrically conductive surface with material properties related to the composition of the as-deposited film.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: October 30, 2018
    Assignee: University of Southern California
    Inventors: Artin Petrossians, Artak Arakelian, James D. Weiland, Florian B. Mansfeld, John J. Whalen, III
  • Patent number: 9795786
    Abstract: The present invention relates to a saliency-based apparatus and methods for visual prostheses. A saliency-based component processes video data output by a digital signal processor before the video data are input to the retinal stimulator. In a saliency-based method, an intensity stream is extracted from an input image, feature maps based on the intensity stream are developed, plural most salient regions of the input image are detected and one of the regions is selected as a highest saliency region.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: October 24, 2017
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Alan Horsager, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon, Peter Meilstrup, Neha Parikh, Arup Roy, James D. Weiland, Chunhong Zhou
  • Publication number: 20160001078
    Abstract: Saliency-based apparatus and methods for visual prostheses are disclosed. A saliency-based component processes video data output by a digital signal processor before the video data are input to the retinal stimulator. In a saliency-based method, an intensity stream is extracted from an input image, feature maps based on the intensity stream are developed, plural most salient regions of the input image are detected and one of the regions is selected as a highest saliency region.
    Type: Application
    Filed: June 23, 2015
    Publication date: January 7, 2016
    Inventors: Robert Greenberg, Alan Horsager, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon, Peter Meilstrup, Neha Parikh, Arup Roy, James D. Weiland, Chunhong Zhou
  • Publication number: 20150290466
    Abstract: A three-coil electromagnetic induction power transfer system is disclosed for epiretinal prostheses and other implants. A third, buffer coil is disposed between an external transmitting coil and a receiver coil buried within the body to improve efficiency and robustness to misalignments. One or more of the coils can be manufactured using micromechanical machining techniques to lay out conductors in a ribbon of biocompatible insulator, folding lengths of the insulated conductor traces longitudinally over one another, and then spiraling them into a ring. The traces change axial position in the ring by shifting across fold lines. One or more U-shaped sections on the traces can be folded so that adjacent traces can project opposite one another, lengthening the resulting ribbon that can be wound into a coil.
    Type: Application
    Filed: June 24, 2015
    Publication date: October 15, 2015
    Applicants: California Institute of Technology, University of Southern California
    Inventors: Yu-Chong Tai, Yu Zhao, Mark S. Humayun, James D. Weiland
  • Patent number: 9078743
    Abstract: A three-coil electromagnetic induction power transfer system is disclosed for epiretinal prostheses and other implants. A third, buffer coil is disposed between an external transmitting coil and a receiver coil buried within the body to improve efficiency and robustness to misalignments. One or more of the coils can be manufactured using micromechanical machining techniques to lay out conductors in a ribbon of biocompatible insulator, folding lengths of the insulated conductor traces longitudinally over one another, and then spiraling them into a ring. The traces change axial position in the ring by shifting across fold lines. One or more U-shaped sections on the traces can be folded so that adjacent traces can project opposite one another, lengthening the resulting ribbon that can be wound into a coil.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: July 14, 2015
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Yu-Chong Tai, Yu Zhao, Mark Humayun, James D. Weiland
  • Patent number: 9061150
    Abstract: The present invention is a saliency-based apparatus and methods for visual prostheses. A saliency-based component processes video data output by a digital signal processor before the video data are input to the retinal stimulator. In a saliency-based method, an intensity stream is extracted from an input image, feature maps based on the intensity stream are developed, plural most salient regions of the input image are detected and one of the regions is selected as a highest saliency region.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: June 23, 2015
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert J. Greenberg, Alan Matthew Horsager, Mark S. Humayun, Kelly H. McClure, Matthew J. McMahon, Peter Meilstrup, Neha Jagdish Parikh, Arup Roy, James D. Weiland, Chunhong Zhou
  • Publication number: 20150105864
    Abstract: The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attaching such implants are also provided.
    Type: Application
    Filed: September 28, 2014
    Publication date: April 16, 2015
    Inventors: Adrian P. Rowley, Lucien D. Laude, Mark S. Humayun, James D. Weiland, Atoosa Lotfi, Francis S. Markland, Jr.
  • Publication number: 20150010777
    Abstract: Aspects of the present disclosure are directed to electrochemical approaches for synthesis of platinum-iridium alloys with selected platinum-iridium ratio content and subsequently predetermined mechanical properties and electrochemical impedance properties. Such can provide a simple and cost-effective process for preparing these electrodes, as compared to conventional thin film processing techniques. A three-electrode electrochemical electrodeposition system is described including an electrochemical cell with a working electrode on which the electrodeposited film is deposited, a counter electrode to complete the electrochemical circuit and a reference electrode to measure and control surface potential. Mixed layers of platinum atoms and iridium atoms can be deposited from electrolyte solution onto the working electrode surface to create an electrically conductive surface with material properties related to the composition of the as-deposited film.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 8, 2015
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Artin Petrossians, Artak Arakelian, James D. Weiland, Florian B. Mansfeld, John J. Whalen, III
  • Patent number: 8852290
    Abstract: The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attaching such implants are also provided.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: October 7, 2014
    Assignee: Doheny Eye Institute
    Inventors: Adrian P. Rowley, Lucien D. Laude, Mark S. Humayun, James D. Weiland, Atoosa Lotfi, Francis S. Markland, Jr.
  • Patent number: 8795504
    Abstract: Aspects of the present disclosure are directed to electrochemical approaches for synthesis of platinum-iridium alloys with selected platinum-iridium ratio content and subsequently predetermined mechanical properties and electrochemical impedance properties. Such can provide a simple and cost-effective process for preparing these electrodes, as compared to conventional thin film processing techniques. A three-electrode electrochemical electrodeposition system is described including an electrochemical cell with a working electrode on which the electrodeposited film is deposited, a counter electrode to complete the electrochemical circuit and a reference electrode to measure and control surface potential. Mixed layers of platinum atoms and iridium atoms can be deposited from electrolyte solution onto the working electrode surface to create an electrically conductive surface with material properties related to the composition of the as-deposited film.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 5, 2014
    Assignee: University of Southern California
    Inventors: Artin Petrossians, Artak Arakelian, James D. Weiland, Florian B. Mansfeld, John J. Whalen, III
  • Publication number: 20140058506
    Abstract: A three-coil electromagnetic induction power transfer system is disclosed for epiretinal prostheses and other implants. A third, buffer coil is disposed between an external transmitting coil and a receiver coil buried within the body to improve efficiency and robustness to misalignments. One or more of the coils can be manufactured using micromechanical machining techniques to lay out conductors in a ribbon of biocompatible insulator, folding lengths of the insulated conductor traces longitudinally over one another, and then spiraling them into a ring. The traces change axial position in the ring by shifting across fold lines. One or more U-shaped sections on the traces can be folded so that adjacent traces can project opposite one another, lengthening the resulting ribbon that can be wound into a coil.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicants: University of Southern California, California Institute of Technology
    Inventors: Yu-Chong Tai, Yu Zhao, Mark Humayun, James D. Weiland
  • Patent number: 8583242
    Abstract: Embodiments of the present disclosure are directed to utilization of one or more arrays that are placed under the choroid. In this approach, an array is placed under the choroid. To achieve this, a scleral incision can be made without cutting the underlying choroid or retina. The array can then be inserted into the space between the sclera and choroid and is pushed to the desired place. It is possible to make several of such scleral incisions in each quadrant of the eye to insert arrays of similar or different shapes into the subchoroidal space. Following insertion of the electrode array the scleral wound may be sutured around the cable to make the array and the eye more stable.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: November 12, 2013
    Assignee: Doheny Eye Institute
    Inventors: Hossein Ameri, Mark S. Humayun, James D. Weiland
  • Patent number: 8571671
    Abstract: A critical element of a retinal prosthesis is the stimulating electrode array, which is placed in close proximity to the retina. It is via this interface that a retinal prosthesis electrically stimulates nerve cells to produce the perception of light. The impedance load seen by the current driver consists of the tissue resistance and the complex electrode impedance. The results show that the tissue resistance of the retina is significantly greater than that of the vitreous humor in the eye. Circuit models of the electrode-retina interface are used to parameterize the different contributors to the overall impedance.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: October 29, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Samip Shah, Amy Chu Peishuan Hines, Dao Min Zhou, Robert J. Greenberg, Mark S. Humayun, James D. Weiland
  • Patent number: 8527056
    Abstract: Methods of electrically stimulating percepts in a patient with a visual prosthesis are discussed. Changes in amplitude of stimulation increase both the perceived brightness and the perceived size of the precept. Changes in frequency of stimulation change the perceived brightness without altering the perceived size of the percept. Hence, a source image may be mapped to a combination of amplitude and frequency that best induces the desired image.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: September 3, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Devyani Nanduri, Mark S. Humayun, James D. Weiland, Jessy Dorn, Robert J. Greenberg, Ione Fine
  • Publication number: 20130131985
    Abstract: The system comprises a wearable, electronic image acquisition and processing system (or visual enhancement system) to guide visually impaired individuals through their environment, providing information to the user about nearby objects of interest, potentially dangerous obstacles, their location, and potential paths to their destination.
    Type: Application
    Filed: April 11, 2012
    Publication date: May 23, 2013
    Inventors: James D. Weiland, Mark S. Humayan, Gerard Medioni, Armand R. Tanguay, JR., Vivek Pradeep, Laurent Itti
  • Publication number: 20120277620
    Abstract: A critical element of a retinal prosthesis is the stimulating electrode array, which is placed in close proximity to the retina. It is via this interface that a retinal prosthesis electrically stimulates nerve cells to produce the perception of light. The impedance load seen by the current driver consists of the tissue resistance and the complex electrode impedance. The results show that the tissue resistance of the retina is significantly greater than that of the vitreous humor in the eye. Circuit models of the electrode-retina interface are used to parameterize the different contributors to the overall impedance.
    Type: Application
    Filed: July 2, 2012
    Publication date: November 1, 2012
    Inventors: Samip Shah, Amy Chu Peishuan Hines, Dao Min Zhou, Robert J. Greenberg, Mark S. Humayun, James D. Weiland
  • Patent number: 8239036
    Abstract: A critical element of a retinal prosthesis is the stimulating electrode array, which is placed in close proximity to the retina. It is via this interface that a retinal prosthesis electrically stimulates nerve cells to produce the perception of light. The impedance load seen by the current driver consists of the tissue resistance and the complex electrode impedance. The results show that the tissue resistance of the retina is significantly greater than that of the vitreous humor in the eye. Circuit models of the electrode-retina interface are used to parameterize the different contributors to the overall impedance.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: August 7, 2012
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Samip Shah, Amy Chu Peishuan Hines, Dao Min Zhou, Robert J. Greenberg, Mark S. Humayun, James D. Weiland
  • Patent number: 8195266
    Abstract: Microelectrode assemblies and related methods are disclosed for bio-stimulating and/or bio-sensing a target tissue. The assemblies can include a two-side substrate, an array of microelectrodes, each of the microelectrodes including a nano-wire embedded within the substrate and extending from a proximal end to a distal end and through the substrate, each nano-wire having a diameter preferably less than 1 ?m. The substrate can include portions made of nano-porous material(s) through which the microelectrodes pass. The substrate with the embedded nano-wires can effectively be fluid impermeable. The proximal ends of the nano-wires can be adapted to be connected to an electronic device and the distal ends are adapted to be disposed in a biological environment for bio-stimulating a target tissue and/or bio-sensing activities of the target tissue. Suitable alloys such as platinum, platinum-iridium, and/or other noble-metal-alloyed compositions can be used for the nano-wires.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 5, 2012
    Assignee: Doheny Eye Institute
    Inventors: John J. Whalen, III, James D. Weiland, Mark S. Humayun
  • Patent number: 8122596
    Abstract: An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: February 28, 2012
    Assignees: Lawrence Livermore National Security, LLC, Doheny Eye Institute
    Inventors: Peter Krulevitch, Dennis L. Polla, Mariam N. Maghribi, Julie Hamilton, Mark S. Humayun, James D. Weiland