Patents by Inventor James D. Wolf

James D. Wolf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912545
    Abstract: A wireless hoist system including a first hoist device having a first motor and a first wireless transceiver and a second hoist device having a second motor and a second wireless transceiver. The wireless hoist system includes a controller in wireless communication with the first wireless transceiver and the second wireless. The controller is configured to receive a user input and determine a first operation parameter and a second operation parameter based on the user input. The controller is also configured to provide, wirelessly, a first control signal indicative of the first operation parameter to the first hoist device and provide, wirelessly, a second control signal indicative of the second operation parameter to the second hoist device. The first hoist device operates based on the first control signal and the second hoist device operates based on the second control signal.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: February 27, 2024
    Assignee: Milwaukee Electric Tool Corporation
    Inventors: Matthew Post, Gareth Mueckl, Matthew N. Thurin, Joshua D. Widder, Timothy J. Bartlett, Patrick D. Gallagher, Jarrod P. Kotes, Karly M. Schober, Kenneth W. Wolf, Terry L. Timmons, Mallory L. Marksteiner, Jonathan L. Lambert, Ryan A. Spiering, Jeremy R. Ebner, Benjamin A. Smith, James Wekwert, Brandon L. Yahr, Troy C. Thorson, Connor P. Sprague, John E. Koller, Evan M. Glanzer, John S. Scott, William F. Chapman, III, Timothy R. Obermann
  • Patent number: 7593107
    Abstract: A system for measuring light absorption levels includes a light source providing a light beam and a container for a liquid. The container includes an opening to provide access to the liquid. A prism is disposed over the opening and is operable to direct at least a first portion of the light beam toward the opening to the liquid such that the at least a portion of the first portion of the light beam is reflected back from the liquid forming an attenuated beam. A detector is operable to measure at least one of a portion of the attenuated beam and a second portion of the light beam. The detector is operable to produce at least one of a liquid measurement signal and a reference signal. A device is operable to compute a ratio of the liquid measurement signal to the reference signal to determine a signal ratio.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: September 22, 2009
    Assignee: Eastman Kodak Company
    Inventors: James D. Wolf, Robert E. Kauffman
  • Patent number: 7375813
    Abstract: A system for measuring light absorption levels for a liquid for use in a printing system includes a light source adapted to provide a divergent beam of light, a liquid container with a hole that acts as a focusing lens, and a prism disposed over the hole to split the divergent beam of light into a reference beam and a measurement beam. The systems include a measurement detector to measure the intensity of the focused beam to produce a liquid measurement signal. A reference detector measures the intensity of the reference beam for compensating the effects of temperature and light source variations on the system signals. A device calculates signal ratios and stores the ratios so that the signal ratios of subsequent colored liquids can be converted into colorant concentrations from a look-up table or through calculations using a signal ratio/colorant concentration.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: May 20, 2008
    Assignee: Eastman Kodak Company
    Inventors: James D. Wolf, Robert E. Kauffman
  • Patent number: 7043967
    Abstract: The present invention is a compact apparatus and method that provides an efficient manner for monitoring the condition and level of a functional fluid directly in operating equipment. A sensor device is provided that includes a plurality of liquid sensors and a plurality of vapor sensors that when used in conjunction with one another at different temperatures, can provide a thorough evaluation of the oxidative degradation, liquid contamination and solid contamination of the fluid to detect the end of the useful life of the fluid. By providing liquid sensors and vapor sensors on the same device, the present invention allows for a compact, efficient, and economically feasible manner to monitor the condition of fluid as well as detecting abnormal operating conditions prior to further component damage and eventual equipment failure.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: May 16, 2006
    Assignee: University of Dayton
    Inventors: Robert E. Kauffman, James D. Wolf
  • Publication number: 20040060344
    Abstract: The present invention is a compact apparatus and method that provides an efficient manner for monitoring the condition and level of a functional fluid directly in operating equipment. A sensor device is provided that includes a plurality of liquid sensors and a plurality of vapor sensors that when used in conjunction with one another at different temperatures, can provide a thorough evaluation of the oxidative degradation, liquid contamination and solid contamination of the fluid to detect the end of the useful life of the fluid. By providing liquid sensors and vapor sensors on the same device, the present invention allows for a compact, efficient, and economically feasible manner to monitor the condition of fluid as well as detecting abnormal operating conditions prior to further component damage and eventual equipment failure.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Inventors: Robert E. Kauffman, James D. Wolf
  • Patent number: 5933016
    Abstract: A method and apparatus are disclosed for the analysis of a fluid to determine the remaining useful life of the fluid and whether the fluid has become contaminated. The method can be performed either on-line or off-line, however, the on-line method is preferred. In the method, a sample of the fluid is contacted by a single electrode which is connected to the ground potential by means of the equipment in which the fluid is used. A current is applied to the sample through the electrode and the conductivity of the sample is measured. The conductivity measurement can then compared to known values for the fluid to determine the remaining useful life of the fluid and whether the fluid has become contaminated.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: August 3, 1999
    Assignee: The University of Dayton
    Inventors: Robert E. Kauffman, James D. Wolf
  • Patent number: 5889200
    Abstract: The present invention relates to a method and apparatus which can be used to detect the abnormal operating condition of equipment, such as engines and machinery, the usefulness of the fluid, and the content of wear metals and elemental constituents in the fluid. The method comprises the steps of bringing at least two electrodes into contact with a sample of a fluid to be analyzed; applying a square voltage wave form to the electrodes at a predetermined scan range and scan rate to cause a current to flow between the electrodes; monitoring the current at the electrodes to determine a current output signal; using the current output signal to measure the conductivity of the fluid; and analyzing the sample to determine a content of wear metals and elemental constituents in the sample.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: March 30, 1999
    Assignee: The University of Dayton
    Inventors: Phillip W. Centers, Costandy S. Saba, James D. Wolf
  • Patent number: 5708507
    Abstract: System and method for temperature resolved molecular emission spectroscopy of solid, liquid or gaseous materials are described wherein a sample is vaporized and decomposed, and the vaporous sample is transported into a combustion flame; a spectrum of intensity of the optical emission from the flame at a selected wavelength versus temperature of the sample define molecular peaks which are characteristic of the sample material and allows both qualitative and quantitative analysis of the sample.
    Type: Grant
    Filed: April 15, 1996
    Date of Patent: January 13, 1998
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Robert L. Wright, Jr., Costandy S. Saba, David W. Johnson, James D. Wolf
  • Patent number: 5480808
    Abstract: A method for the analysis of peroxide in hydrocarbon fuels such as jet fuels, diesel fuel, kerosene and gasoline is disclosed which can be performed both at remote locations as well as in a laboratory setting. A sample of the fuel to be tested is mixed with a solution containing a water-soluble salt and aqueous iodide solution to reduce the peroxide and produce free iodine. The sample is then subjected to a single sweep voltammetric analysis to measure the current through the sample as a function of the potential applied. The resulting peak of current on a current-potential plot can then be used to determine the amount of peroxide in solution.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: January 2, 1996
    Assignee: The Unversity of Dayton
    Inventors: Robert E. Kauffman, James D. Wolf