Patents by Inventor James Dalton Bell

James Dalton Bell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929421
    Abstract: Various methods and systems are provided for facilitating the creation of a new and potentially thinner form of dielectric. Alternatively, for a given capacitance, a thicker layer can be created with lower risk of leakage. The present disclosure will enable the creation of physically smaller electronic components. Isotope-Modified Hafnium Dielectric is used to create a dielectric layer with a greater range of dielectric coefficients, which may enable the creation of smaller and/or more reliable electronic components.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: March 12, 2024
    Inventor: James Dalton Bell
  • Publication number: 20210336027
    Abstract: Various methods and systems are provided for facilitating the creation of a new and potentially thinner form of dielectric. Alternatively, for a given capacitance, a thicker layer can be created with lower risk of leakage. The present disclosure will enable the creation of physically smaller electronic components. Isotope-Modified Hafnium Dielectric is used to create a dielectric layer with a greater range of dielectric coefficients, which may enable the creation of smaller and/or more reliable electronic components.
    Type: Application
    Filed: April 15, 2021
    Publication date: October 28, 2021
    Inventor: James Dalton Bell
  • Patent number: 9459401
    Abstract: An optical waveguide having a cladding layer formed of high-purity glass, or a cladding layer formed of high-purity isotope-proportion modified glass, and with a core of high-purity isotope-proportion-modified glass with the index of refraction of the core glass greater than the index of refraction of the cladding glass, said high-purity isotope-proportion-modified core material having a Si-29-isotope proportion at most 4.447% Si-29 (atom/atom) of all silicon atoms in said core, or at least 4.90% of Si-29 (atom/atom) atoms in said core, or having a Ge-73 isotope proportion of at most 7.2% Ge-73 (atom/atom) of all germanium atoms in said core, or at least 8.18% of Ge-73 (atom/atom) of Germanium atoms in said core region.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: October 4, 2016
    Inventor: James Dalton Bell
  • Publication number: 20150362671
    Abstract: An optical waveguide having a cladding layer formed of high-purity glass, or a cladding layer formed of high-purity isotope-proportion modified glass, and with a core of high-purity isotope-proportion-modified glass with the index of refraction of the core glass greater than the index of refraction of the cladding glass, said high-purity isotope-proportion-modified core material having a Si-29-isotope proportion at most 4.447% Si-29 (atom/atom) of all silicon atoms in said core, or at least 4.90% of Si-29 (atom/atom) atoms in said core, or having a Ge-73 isotope proportion of at most 7.2% Ge-73 (atom/atom) of all germanium atoms in said core, or at least 8.18% of Ge-73 (atom/atom) of Germanium atoms in said core region.
    Type: Application
    Filed: April 20, 2015
    Publication date: December 17, 2015
    Inventor: James Dalton Bell
  • Patent number: 9014524
    Abstract: An optical waveguide having a cladding layer formed of high-purity glass, or a cladding layer formed of high-purity isotope-proportion modified glass, and with a core of high-purity isotope-proportion-modified glass with the index of refraction of the core glass greater than the index of refraction of the cladding glass, said high-purity isotope-proportion-modified core material having a Si-29-isotope proportion at most 4.447% Si-29 (atom/atom) of all silicon atoms in said core, or at least 4.90% of Si-29 (atom/atom) atoms in said core, or having a Ge-73 isotope proportion of at most 7.2% Ge-73 (atom/atom) of all germanium atoms in said core, or at least 8.18% of Ge-73 (atom/atom) of Germanium atoms in said core region.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: April 21, 2015
    Inventor: James Dalton Bell
  • Publication number: 20150023644
    Abstract: An optical waveguide having a cladding layer formed of high-purity glass, or a cladding layer formed of high-purity isotope-proportion modified glass, and with a core of high-purity isotope-proportion-modified glass with the index of refraction of the core glass greater than the index of refraction of the cladding glass, said high-purity isotope-proportion-modified core material having a Si-29-isotope proportion at most 4.447% Si-29 (atom/atom) of all silicon atoms in said core, or at least 4.90% of Si-29 (atom/atom) atoms in said core, or having a Ge-73 isotope proportion of at most 7.2% Ge-73 (atom/atom) of all germanium atoms in said core, or at least 8.18% of Ge-73 (atom/atom) of Germanium atoms in said core region.
    Type: Application
    Filed: June 20, 2014
    Publication date: January 22, 2015
    Inventor: James Dalton Bell
  • Patent number: 8929704
    Abstract: An optical waveguide having a cladding layer formed of high-purity glass, or a cladding layer formed of high-purity isotope-proportion modified glass, and with a core of high-purity isotope-proportion-modified glass with the index of refraction of the core glass greater than the index of refraction of the cladding glass, said high-purity isotope-proportion-modified core material having a Si-29-isotope proportion at most 4.447% Si-29 (atom/atom) of all silicon atoms in said core, or at least 4.90% of Si-29 (atom/atom) atoms in said core, or having a Ge-73 isotope proportion of at most 7.2% Ge-73 (atom/atom) of all germanium atoms in said core, or at least 8.18% of Ge-73 (atom/atom) of Germanium atoms in said core region.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: January 6, 2015
    Inventor: James Dalton Bell