Patents by Inventor James Daniel Bryant

James Daniel Bryant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11697151
    Abstract: New shape-cast 7xx aluminum alloys products are disclosed. The new shape-cast products may include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 11, 2023
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Eider Simielli, Jen C. Lin, Wenping Zhang, James Daniel Bryant
  • Patent number: 11447851
    Abstract: New 6xxx aluminum alloy sheet products and methods of making the same are disclosed. The new methods may include preparing a 6xxx aluminum alloy sheet product for solution heat treatment, solution heat treating and then quenching the 6xxx aluminum alloy sheet product, and then exposing the 6xxx aluminum alloy sheet product to a treatment temperature of from 30° C. to 60° C. for 0.2 to 300 seconds. After the exposing step, the 6xxx aluminum alloy sheet product may be coiled and then placed in an ambient environment. Due to the post-quench heating and subsequent exposure to ambient, a preselected amount of Newtonian cooling may be induced, thereby creating a unique and consistent microstructure within the 6xxx aluminum alloy sheet products.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: September 20, 2022
    Assignee: Arconic Technologies LLC
    Inventors: James Daniel Bryant, Colleen E. Weller, Dirk C. Mooy, Zachariah D. Meissen
  • Publication number: 20220081741
    Abstract: New aluminum alloys are disclosed. The new aluminum alloys may include from 0.70 to 1.4 wt. % Si, from 0.70 to 1.3 wt. % Mg, wherein (wt. % Mg)/(wt. % Si) is not greater than 1.40, from 0.70 - 3.0 wt. % Zn, from 0.55 to 1.3 wt. % Cu, wherein the total amount of Si+Mg+Zn+Cu is not greater than 4.25 wt. %, from 0.01 to 0.30 wt. % Fe, up to 0.70 wt. % Mn, up to 0.15 wt. % Cr, up to 0.20 wt. % Zr, up to 0.20 wt. % V, and up to 0.25 wt. % Ti, the balance being aluminum, optional incidental elements and impurities. The new aluminum alloys may realize an improved combination of properties, such as an improved combination of strength, formability and/or corrosion resistance.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Inventors: Timothy A. Hosch, James Daniel Bryant, Dirk C. Mooy
  • Patent number: 11103919
    Abstract: New 7xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: August 31, 2021
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Eider Simielli, Jen C. Lin, Wenping Zhang, James Daniel Bryant
  • Publication number: 20200384529
    Abstract: New shape-cast 7xx aluminum alloys products are disclosed. The new shape-cast products may include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Xinyan Yan, Eider Simielli, Jen C. Lin, Wenping Zhang, James Daniel Bryant
  • Patent number: 10119183
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: November 6, 2018
    Assignee: ARCONIC INC.
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Patent number: 10047423
    Abstract: The present disclosure relates to methods for producing new 6xxx aluminum alloy sheet products having tailored precipitate phase particle size distributions. The tailored precipitate phase particle size distributions may be produced by preparing a 6xxx aluminum alloy sheet for precipitate phase modification, and then modifying an initial precipitate phase particle size distribution of the material. The modifying may include heating the intermediate gauge strip to a temperature of from 440° C. (825° F.) to 500° C. (932° F.) and for a time sufficient to create a modified strip product having a modified (tailored) precipitate phase particle size distribution. The modified strip product may realize improved properties.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 14, 2018
    Assignee: Arconic Inc.
    Inventors: James Daniel Bryant, Colleen Elizabeth Weller, Cyril F. Bell, II, Barbara Lucille Hyde, Dirk C. Mooy
  • Patent number: 10030295
    Abstract: The present disclosure relates to methods for producing new 6xxx aluminum alloy sheet products having tailored precipitate phase particle size distributions. The tailored precipitate phase particle size distributions may be produced by preparing a 6xxx aluminum alloy sheet for precipitate phase modification, and then modifying an initial precipitate phase particle size distribution of the material. The modifying may include heating the intermediate gauge strip to a temperature of from 440° C. (825° F.) to 500° C. (932° F.) and for a time sufficient to create a modified strip product having a modified (tailored) precipitate phase particle size distribution. The modified strip product may realize improved properties.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: July 24, 2018
    Assignee: Arconic Inc.
    Inventors: James Daniel Bryant, Colleen Elizabeth Weller, Cyril F. Bell, II, Barbara Lucille Hyde, Dirk C. Mooy
  • Publication number: 20180112296
    Abstract: The present disclosure relates to methods of producing heat-treatable as-cast plate, and products based on the same. Generally, the new methods comprise continuously delivering a molten aluminum alloy having at least one of zinc (Zn), magnesium (Mg), silicon (Si), and copper (Cu) to a molten belt caster, continuously solidifying the molten aluminum alloy into an aluminum alloy plate via the horizontal belt caster, then continuously discharging the aluminum alloy plate at an exit of the horizontal belt caster, and then quenching the discharged aluminum alloy plate via a quenching apparatus located proximal the exit of the horizontal belt caster.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 26, 2018
    Inventors: James Daniel Bryant, Xinyan Yan, Adam Schaut
  • Patent number: 9765419
    Abstract: New methods for aging aluminum alloys having zinc and magnesium are disclosed. The methods may include first aging the aluminum alloy at a first temperature of from about 310° F. to 530° F. and for a first aging time of from 1 minute to 6 hours, and then second aging the aluminum alloy at a second temperature for a second aging time of at least 30 minutes, with the second temperature being lower than the first temperature.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: September 19, 2017
    Assignee: ALCOA USA CORP.
    Inventors: Xinyan Yan, Wenping Zhang, Dana Clark, James Daniel Bryant, Jen Lin
  • Publication number: 20170137920
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: January 30, 2017
    Publication date: May 18, 2017
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Publication number: 20170121795
    Abstract: New wrought 7xxx aluminum alloys are disclosed. The new wrought 7xxx aluminum alloys generally include from 3.75 to 8.0 wt. % Zn, from 1.25 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.35 wt. % Cu, from 0.04 to 0.20 wt. % V, from 0.06 to 0.20 wt. % Zr, where V+Zr?0.23 wt. %, from 0.01 to 0.25 wt. % Ti, up to 0.50 wt. % Mn, up to 0.40 wt. % Cr, up to 0.35 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and impurities, wherein the wrought 7xxx aluminum alloy include not greater than 0.10 wt. % each of any one impurity, and wherein the wrought 7xxx aluminum alloy includes not greater than 0.35 wt. % in total of the impurities.
    Type: Application
    Filed: October 27, 2016
    Publication date: May 4, 2017
    Inventors: Xinyan Yan, James Daniel Bryant, Jen C. Lin, Wenping Zhang, Eider Simielli
  • Patent number: 9587298
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Grant
    Filed: March 9, 2013
    Date of Patent: March 7, 2017
    Assignee: ARCONIC INC.
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Publication number: 20160348225
    Abstract: New 6xxx aluminum alloy sheet products and methods of making the same are disclosed. The new methods may include preparing a 6xxx aluminum alloy sheet product for solution heat treatment, solution heat treating and then quenching the 6xxx aluminum alloy sheet product, and then exposing the 6xxx aluminum alloy sheet product to a treatment temperature of from 30° C. to 60° C. for 0.2 to 300 seconds. After the exposing step, the 6xxx aluminum alloy sheet product may be coiled and then placed in an ambient environment. Due to the post-quench heating and subsequent exposure to ambient, a preselected amount of Newtonian cooling may be induced, thereby creating a unique and consistent microstructure within the 6xxx aluminum alloy sheet products.
    Type: Application
    Filed: May 26, 2016
    Publication date: December 1, 2016
    Inventors: James Daniel Bryant, Colleen E. Weller, Dirk C. Mooy, Zachariah D. Meissen
  • Patent number: 9249487
    Abstract: New methods for aging aluminum alloys having zinc and magnesium are disclosed. The methods may include first aging the aluminum alloy at a first temperature of from about 330° F. to 530° F. and for a first aging time of from 1 minute to 6 hours, and then second aging the aluminum alloy at a second temperature for a second aging time of at least 30 minutes, with the second temperature being lower than the first temperature.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 2, 2016
    Assignee: ALCOA INC.
    Inventors: Xinyan Yan, Wenping Zhang, Dana Clark, James Daniel Bryant, Jen Lin
  • Publication number: 20150376754
    Abstract: New methods for aging aluminum alloys having zinc and magnesium are disclosed. The methods may include first aging the aluminum alloy at a first temperature of from about 330° F. to 530° F. and for a first aging time of from 1 minute to 6 hours, and then second aging the aluminum alloy at a second temperature for a second aging time of at least 30 minutes, with the second temperature being lower than the first temperature.
    Type: Application
    Filed: March 14, 2013
    Publication date: December 31, 2015
    Inventors: Xinyan Yan, Wenping Zhang, Dana Clark, James Daniel Bryant, Jen Lin
  • Publication number: 20150315680
    Abstract: New 7xx aluminum casting alloys are disclosed. The aluminum casting alloys generally include from 3.0 to 8.0 wt. % Zn, from 1.0 to 3.0 wt. % Mg, where the wt. % Zn exceeds the wt. % Mg, from 0.35 to 1.0 wt. % Cu, where the wt. % Mg exceeds the wt. % Cu, from 0.05 to 0.30 wt. % V, from 0.01 to 1.0 wt. % of at least one secondary element (Mn, Cr, Zr, Ti, B, and combinations thereof), up to 0.50 wt. % Fe, and up to 0.25 wt. % Si, the balance being aluminum and other elements, wherein the aluminum casting alloy include not greater than 0.05 wt. % each of the other elements, and wherein the aluminum casting alloy includes not greater than 0.15 wt. % in total of the other elements.
    Type: Application
    Filed: April 23, 2015
    Publication date: November 5, 2015
    Inventors: Xinyan Yan, Eider Simielli, Jen C. Lin, Wenping Zhang, James Daniel Bryant
  • Publication number: 20150259774
    Abstract: New methods for aging aluminum alloys having zinc and magnesium are disclosed. The methods may include first aging the aluminum alloy at a first temperature of from about 310° F. to 530° F. and for a first aging time of from 1 minute to 6 hours, and then second aging the aluminum alloy at a second temperature for a second aging time of at least 30 minutes, with the second temperature being lower than the first temperature.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 17, 2015
    Applicant: ALCOA INC.
    Inventors: Xinyan Yan, Wenping Zhang, Dana Clark, James Daniel Bryant, Jen Lin
  • Publication number: 20140230974
    Abstract: New magnesium-zinc aluminum alloy bodies and methods of producing the same are disclosed. The new magnesium-zinc aluminum alloy bodies generally include 3.0-6.0 wt. % magnesium and 2.5-5.0 wt. % zinc, where at least one of the magnesium and the zinc is the predominate alloying element of the aluminum alloy bodies other than aluminum, and wherein (wt. % Mg)/(wt. % Zn) is from 0.6 to 2.40, and may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new magnesium-zinc aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: March 9, 2013
    Publication date: August 21, 2014
    Applicant: ALCOA INC.
    Inventors: Jen C. Lin, John M. Newman, Ralph R. Sawtell, Rajeev G. Kamat, Darl G. Boysel, Gary H. Bray, James Daniel Bryant, Brett P. Connor, Mario Greco, Gino Norman Iasella, David J. McNeish, Shawn J. Murtha, Roberto J. Rioja, Shawn P. Sullivan
  • Patent number: 8608968
    Abstract: Described herein are compounds, compositions, and methods useful for bioremediation of a contamination. In particular, described herein are compositions that include one or methyl esters of a fatty acid and one or more bioremediation reagents, and methods for their use.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: December 17, 2013
    Assignee: Carus Corporation
    Inventors: James Daniel Bryant, Keith Meyer