Patents by Inventor James David Strom

James David Strom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8686782
    Abstract: The present invention provides an apparatus and method for a frequency adaptive level shifter circuit. The frequency adaptive level shifter circuit includes a first inverter, a second inverter coupled to the output of the first inverter, a capacitor coupled to the output of the second inverter, and a resistor coupled to the output of the capacitor. The frequency adaptive level shifter circuit further includes a transistor coupled to the output of the resistor, wherein the transistor has a gate connected to a reference voltage, a third inverter coupled to the output of the capacitor, and a fourth inverter coupled to the output of the third inverter and the transistor and outputting the signal.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joel Thomas Ficke, David Michael Friend, Grant Paul Kesselring, James David Strom, Jianguo Yao
  • Patent number: 8373486
    Abstract: The present invention provides an apparatus and method for a frequency adaptive level shifter circuit. The frequency adaptive level shifter circuit includes a first inverter, a second inverter coupled to the output of the first inverter, a capacitor coupled to the output of the second inverter, and a resistor coupled to the output of the capacitor. The frequency adaptive level shifter circuit further includes a transistor coupled to the output of the resistor, wherein the transistor has a gate connected to a reference voltage, a third inverter coupled to the output of the capacitor, and a fourth inverter coupled to the output of the third inverter and the transistor and outputting the signal.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: February 12, 2013
    Assignee: International Business Machines Corporation
    Inventors: Joel Thomas Ficke, David Michael Friend, Grant Paul Kesselring, James David Strom, Jianguo Yao
  • Publication number: 20120187987
    Abstract: The present invention provides an apparatus and method for a frequency adaptive level shifter circuit. The frequency adaptive level shifter circuit includes a first inverter, a second inverter coupled to the output of the first inverter, a capacitor coupled to the output of the second inverter, and a resistor coupled to the output of the capacitor. The frequency adaptive level shifter circuit further includes a transistor coupled to the output of the resistor, wherein the transistor has a gate connected to a reference voltage, a third inverter coupled to the output of the capacitor, and a fourth inverter coupled to the output of the third inverter and the transistor and outputting the signal.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 26, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel Thomas Ficke, David Michael Friend, Grant Paul Kesselring, James David Strom, Jianguo Yao
  • Publication number: 20120133413
    Abstract: The present invention provides an apparatus and method for a frequency adaptive level shifter circuit. The frequency adaptive level shifter circuit includes a first inverter, a second inverter coupled to the output of the first inverter, a capacitor coupled to the output of the second inverter, and a resistor coupled to the output of the capacitor. The frequency adaptive level shifter circuit further includes a transistor coupled to the output of the resistor, wherein the transistor has a gate connected to a reference voltage, a third inverter coupled to the output of the capacitor, and a fourth inverter coupled to the output of the third inverter and the transistor and outputting the signal.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joel Thomas Ficke, David Michael Friend, Grant Paul Kesselring, James David Strom, Jianguo Yao
  • Patent number: 7760843
    Abstract: The present invention provides for a self-correcting state circuit. A first flip flop is configured to receive a clock input and a first data input, and to generate a first output in response to the clock input and the first data input. A second flip flop is coupled to the first flip flop and configured to receive the clock input and to receive the first output as a second data input, and to generate a second output in response to the clock input and the first output. A first correction circuit is coupled to the second flip flop and configured to generate a corrected output. A third flip flop is coupled to the first correction circuit and configured to receive the clock input and to receive the corrected output as a third data input, and to generate a third output in response to the clock input and the third data input.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: David William Boerstler, Eric John Lukes, Hiroki Kihara, James David Strom
  • Patent number: 7538625
    Abstract: A method and enhanced phase-locked loop (PLL) circuit enable effective testing of the PLL. A phase frequency detector generates a differential signal, receiving a reference signal and a feedback signal of an output signal of the PLL circuit. A charge pump is coupled to the phase frequency detector receiving the differential signal. The charge pump applies either negative or positive charge pulses to a low-pass filter, which generates a tuning voltage input applied to a voltage controlled oscillator. A first divider is coupled to the voltage controlled oscillator receives and divides down the VCO output signal, providing the output signal of the PLL circuit. A second divider receives the output signal of the PLL circuit and provides the feedback signal to the phase frequency detector. The output signal of PLL circuit is applied to a clock distribution.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 26, 2009
    Assignee: International Business Machines Corporation
    Inventors: Michael David Cesky, James David Strom
  • Publication number: 20080301503
    Abstract: The present invention provides for a self-correcting state circuit. A first flip flop is configured to receive a clock input and a first data input, and to generate a first output in response to the clock input and the first data input. A second flip flop is coupled to the first flip flop and configured to receive the clock input and to receive the first output as a second data input, and to generate a second output in response to the clock input and the first output. A first correction circuit is coupled to the second flip flop and configured to generate a corrected output. A third flip flop is coupled to the first correction circuit and configured to receive the clock input and to receive the corrected output as a third data input, and to generate a third output in response to the clock input and the third data input.
    Type: Application
    Filed: August 7, 2008
    Publication date: December 4, 2008
    Inventors: David William Boerstler, Eric John Lukes, Hiroki Kihara, James David Strom
  • Patent number: 7453293
    Abstract: The present invention provides for a self-correcting state circuit. A first flip flop is configured to receive a clock input and a first data input, and to generate a first output in response to the clock input and the first data input. A second flip flop is coupled to the first flip flop and configured to receive the clock input and to receive the first output as a second data input, and to generate a second output in response to the clock input and the first output. A first correction circuit is coupled to the second flip flop and configured to generate a corrected output. A third flip flop is coupled to the first correction circuit and configured to receive the clock input and to receive the corrected output as a third data input, and to generate a third output in response to the clock input and the third data input.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: November 18, 2008
    Assignee: International Business Machines Corporation
    Inventors: David William Boerstler, Eric John Lukes, Hiroki Kihara, James David Strom
  • Publication number: 20080204154
    Abstract: A method and enhanced phase-locked loop (PLL) circuit enable effective testing of the PLL. A phase frequency detector generates a differential signal, receiving a reference signal and a feedback signal of an output signal of the PLL circuit. A charge pump is coupled to the phase frequency detector receiving the differential signal. The charge pump applies either negative or positive charge pulses to a low-pass filter, which generates a tuning voltage input applied to a voltage controlled oscillator. A first divider is coupled to the voltage controlled oscillator receives and divides down the VCO output signal, providing the output signal of the PLL circuit. A second divider receives the output signal of the PLL circuit and provides the feedback signal to the phase frequency detector. The output signal of PLL circuit is applied to a clock distribution.
    Type: Application
    Filed: February 27, 2007
    Publication date: August 28, 2008
    Inventors: Michael David Cesky, James David Strom
  • Publication number: 20080208541
    Abstract: A method and enhanced phase-locked loop (PLL) circuit enable effective testing of the PLL, and a design structure on which the subject circuit resides is provided. A phase frequency detector generates a differential signal, receiving a reference signal and a feedback signal of an output signal of the PLL circuit. A charge pump is coupled to the phase frequency detector receiving the differential signal. The charge pump applies either negative or positive charge pulses to a low-pass filter, which generates a tuning voltage input applied to a voltage controlled oscillator. A first divider is coupled to the voltage controlled oscillator receives and divides down the VCO output signal, providing the output signal of the PLL circuit. A second divider receives the output signal of the PLL circuit and provides the feedback signal to the phase frequency detector. The output signal of PLL circuit is applied to a clock distribution.
    Type: Application
    Filed: October 10, 2007
    Publication date: August 28, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael David Cesky, James David Strom
  • Publication number: 20080116947
    Abstract: A method and apparatus for distributing charge pump current and voltage for phase-locked loop circuits includes a charge pump implemented with a plurality of charge pump stages, each providing substantially equal charge pump current. Each stage includes a respective associated buffer for receiving an incoming increment (INC) signal and an incoming decrement (DEC) signal and providing an output time delayed INC signal and an output time delayed DEC. A chain of the buffers is provided to pass the time delayed INC signals and the time delayed DEC signals to the respective charge pump stages. Each of the charge pump stages includes an enable input arranged for independently enabling each respective charge pump stage.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 22, 2008
    Inventors: Katherine Ellen Lobb, James David Strom
  • Publication number: 20080116959
    Abstract: A method and apparatus for distributing charge pump current and voltage for phase-locked loop circuits, and a design structure on which the subject circuit resides are provided. A charge pump implemented with a plurality of charge pump stages, each providing substantially equal charge pump current. Each stage includes a respective associated buffer for receiving an incoming increment (INC) signal and an incoming decrement (DEC) signal and providing an output time delayed INC signal and an output time delayed DEC. A chain of the buffers is provided to pass the time delayed INC signals and the time delayed DEC signals to the respective charge pump stages. Each of the charge pump stages includes an enable input arranged for independently enabling each respective charge pump stage.
    Type: Application
    Filed: October 15, 2007
    Publication date: May 22, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Katherine Ellen Hirsch, James David Strom
  • Patent number: 7173482
    Abstract: A complementary metal oxide semiconductor (CMOS) voltage regulator for low headroom applications includes a differential input common mode range amplifier. The differential input common mode range amplifier is formed by a plurality of CMOS transistors. A source follower CMOS transistor is coupled to an output of the differential input common mode range amplifier for providing an output of the CMOS voltage regulator. A current source is coupled to the differential input common mode range amplifier for maintaining a bias current through the differential input common mode range amplifier.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Katherine Ellen Lobb, Patrick Lee Rosno, James David Strom
  • Patent number: 7118274
    Abstract: A method and a reference circuit for bias current switching are provided for implementing an integrated temperature sensor. A first bias current is generated and constantly applied to a thermal sensing diode. A second bias current is provided to the thermal sensing diode by selectively switching a multiplied current from a current multiplier to the thermal sensing diode or to a load diode. The reference circuit includes a reference current source coupled to current mirror. The current mirror provides a first bias current to a thermal sensing diode. The current mirror is coupled to a current multiplier that provides a multiplied current. A second bias current to the thermal sensing diode includes the first bias current and the multiplied current from the current multiplier. The second bias current to the thermal sensing diode is provided by selectively switching the multiplied current between the thermal sensing diode and a dummy load diode.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: October 10, 2006
    Assignee: International Business Machines Corporation
    Inventors: Nghia Van Phan, Patrick Lee Rosno, James David Strom
  • Patent number: 7119587
    Abstract: The present invention provides for state correction. A first value in a state circuit is received from a flip flop. The received value is transmitted to a second flip flop. The received value within the second flip flop is altered if an error condition arises. The received value is transmitted to a third flip flop. In one aspect, the received value transmitted to the third flip flop comprises an unaltered received value. In another aspect, the received value transmitted to the third flip flop comprises transmitting an altered received value. This allows for an incorrect state within the state machine to change to a correct state after a few clock pulses.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: October 10, 2006
    Assignee: International Business Machines Corporation
    Inventors: David William Boerstler, Eric John Lukes, Hiroki Kihara, James David Strom
  • Patent number: 7061284
    Abstract: The present invention provides for state correction. A first flip flop coupled to a second flip flop. A state correction circuit coupled to the output of the second flip flop. A third flip flop is coupled to the output of the state correction circuit. A fourth flip flop is coupled to the output of the third flip flop.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: June 13, 2006
    Assignee: International Business Machines Corporation
    Inventors: David William Boerstler, Eric John Lukes, Hiroki Kihara, James David Strom
  • Patent number: 6859092
    Abstract: A method and a low voltage, complementary metal oxide semiconductor (CMOS) circuit are provided for generating voltage and current references with a low voltage power supply. A voltage generating circuit provides a voltage reference and is formed by a plurality of CMOS transistors and a resistor. An operational amplifier includes a differential pair of CMOS transistors. The first voltage reference is applied to an input of the differential pair of transistors and an output of the differential pair of transistors providing a second voltage reference. The operational amplifier includes a plurality of current reference transistors. A first voltage generating circuit generates a first voltage and a second voltage generating circuit generating a second voltage. The first and second voltage generating circuits are formed by a plurality of CMOS transistors. The generated first and second voltages are applied to the voltage reference generating circuit and current reference transistors.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: February 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Eric John Lukes, Patrick Lee Rosno, James David Strom, Dana Marie Woeste
  • Publication number: 20040207460
    Abstract: A method and a low voltage, complementary metal oxide semiconductor (CMOS) circuit are provided for generating voltage and current references with a low voltage power supply. A voltage generating circuit provides a voltage reference and is formed by a plurality of CMOS transistors and a resistor. An operational amplifier includes a differential pair of CMOS transistors. The first voltage reference is applied to an input of the differential pair of transistors and an output of the differential pair of transistors providing a second voltage reference. The operational amplifier includes a plurality of current reference transistors. A first voltage generating circuit generates a first voltage and a second voltage generating circuit generating a second voltage. The first and second voltage generating circuits are formed by a plurality of CMOS transistors. The generated first and second voltages are applied to the voltage reference generating circuit and current reference transistors.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 21, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Eric John Lukes, Patrick Lee Rosno, James David Strom, Dana Marie Woeste
  • Patent number: 6724256
    Abstract: A receiver is provided with delay generally insensitive to input amplitude and slew rate. The receiver includes a first differential transistor pair having a common emitter connection. A differential input is applied to a respective base of the differential transistor pair. A pair of load transistors is connected to the respective collector of the differential transistor pair. A respective resistance is coupled to a base of the load transistors for providing a delay independent of the differential input; and a pair of bias transistors is coupled to the respective collector of the differential transistor pair for biasing the load transistors.
    Type: Grant
    Filed: November 7, 2002
    Date of Patent: April 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: James David Strom, Patrick Lee Rosno
  • Patent number: 6693465
    Abstract: Circuitry is disclosed for detection of open inputs on an enhanced differential receiver. A pulldown terminator is coupled to the inputs of the enhanced differential receiver. If the differential inputs are not actively driven, the voltage on both differential inputs will be pulled to a predetermined voltage. When the voltage on the differential inputs reach a reference voltage, an active device detects that the reference voltage has been reached, and produces a predetermined logic value on an output of the enhanced differential receiver. The enhanced differential receiver is not subject to oscillation when not actively driven. Delay through the enhanced differential receiver is not substantially greater than delay through a conventional differential receiver consisting of only a differential amplifier.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: February 17, 2004
    Assignee: International Business Machines Corporation
    Inventors: Patrick Lee Rosno, James David Strom